Chem 542 Problem Set 9

Questions 1-3 are about a quantum particle on a flat surface

1. A wavepacket $\psi(x) = \left(\frac{1}{2\pi\langle\Delta\hat{x}^2\rangle}\right)^{\frac{1}{4}} e^{\frac{-(x-\langle\hat{x}\rangle)^2}{4\langle\Delta\hat{x}^2\rangle} + \frac{i}{\hbar} \cdot x \cdot \langle\hat{p}\rangle}$ is placed on a flat potential energy surface, meaning $\hat{H}(\hat{p}) = \frac{\hat{p}_S^2}{2m}$, where \hat{p}_S is the "regular" momentum operator: $\hat{p}_S = -i\hbar\frac{\partial}{\partial x}$ in the Schrodinger frame. Please calculate:

a)
$$\langle \hat{p}(t) \rangle^2$$
 b) $\langle \hat{p}(t)^2 \rangle$ c) $\langle \Delta \hat{p}(t)^2 \rangle = \langle \hat{p}(t)^2 \rangle - \langle \hat{p}(t) \rangle^2$

using the Heisenberg picture. Note that the operator for $\hat{p}(t)$ has to be derived, but your book can guide you on this part.

Answer: a) First, we put the operators into the Heisenberg form:

$$\frac{\partial \hat{p}(t)}{\partial t} = \frac{1}{i\hbar} [\hat{p}(t), \hat{H}(\hat{p})]$$

From class we know that $\left[\hat{p}(t), \hat{H}(\hat{p})\right] = i\hbar \frac{\partial \hat{H}(\hat{p})}{\partial \hat{x}} = i\hbar \frac{\partial}{\partial \hat{x}} \frac{\hat{p}_s^2}{2m} = 0$. Plugging this into the above yields $\frac{\partial \hat{p}(t)}{\partial t} = 0$. We can integrate to solve for $\hat{p}(t)$:

 $\int_{\hat{p}(0)}^{\hat{p}(t)} \partial \hat{p}(t)' = \hat{p}(t) - \hat{p}(0) = 0 \text{ and thus } \hat{p}(t) = \hat{p}(0), \text{ where } \hat{p}(0) \text{ is just the position operator in the Schrodinger frame, i.e. } \hat{p}_s = -i\hbar \frac{\partial}{\partial x}. \text{ As a result,}$

$$\langle \hat{p}(t) \rangle = -i\hbar \int_{-\infty}^{\infty} \psi(x)^* \frac{\partial}{\partial x} \psi(x) \cdot \partial x = \langle \hat{p} \rangle$$

And as a result: $\langle \hat{p}(t) \rangle^2 = \langle \hat{p} \rangle^2$.

b) Likewise,

$$\langle \hat{p}_s^2 \rangle = -\hbar^2 \int_{-\infty}^{\infty} \psi(x)^* \frac{\partial^2}{\partial x^2} \psi(x) \cdot \partial x = \frac{\hbar^2}{4 \langle \Delta x^2 \rangle} + \langle \hat{p} \rangle^2$$

C) Thus
$$\langle \Delta \hat{p}(t)^2 \rangle = \langle \hat{p}(t)^2 \rangle - \langle \hat{p}(t) \rangle^2 = \frac{\hbar^2}{4\langle \Delta x^2 \rangle} + \langle \hat{p} \rangle^2 - \langle \hat{p} \rangle = \frac{\hbar^2}{4\langle \Delta x^2 \rangle}$$
.

This makes sense because the definition of a minimum uncertainty wavepacket requires: $\langle \Delta \hat{p}^2 \rangle \langle \Delta x^2 \rangle = \frac{\hbar^2}{4}$.

2. For the free particle wavepacket $\psi(x) = \left(\frac{1}{2\pi\langle\Delta\hat{x}^2\rangle}\right)^{\frac{1}{4}} e^{\frac{-(x-\langle\hat{x}\rangle)^2}{4\langle\Delta\hat{x}^2\rangle} + \frac{i}{\hbar} \cdot x \cdot \langle\hat{p}\rangle}$, calculate:

a)
$$\langle \hat{x}(t) \rangle^2$$
 b) $\langle \hat{x}(t)^2 \rangle$ c) $\langle \Delta \hat{x}(t)^2 \rangle = \langle \hat{x}(t)^2 \rangle - \langle \hat{x}(t) \rangle^2$

using the Heisenberg picture. Note that for a free particle $\widehat{H}(\widehat{p}) = \frac{\widehat{p}_s^2}{2m}$, where \widehat{p}_s is the "regular" momentum operator in the Schrodinger frame. Note that the operator for $\widehat{x}(t)$ has to be derived, but your book can guide you on this part.

Answer: a) First, we put the operators into the Heisenberg form:

$$\frac{\partial \hat{x}(t)}{\partial t} = \frac{1}{i\hbar} \left[\hat{x}(t), \hat{H}(\hat{p}) \right]$$

From class we know that $\left[\hat{x}(t), \hat{H}(\hat{p})\right] = i\hbar \frac{\partial \hat{H}(\hat{p})}{\partial \hat{p}} = i\hbar \frac{\partial}{\partial \hat{p}} \frac{\hat{p}_s^2}{2m} = i\hbar \frac{\hat{p}_s}{m}$. Plugging this into the above yields $\frac{\partial \hat{x}(t)}{\partial t} = \frac{1}{i\hbar} \left[\hat{x}(t), \hat{H}(\hat{p})\right] = \frac{1}{i\hbar} i\hbar \frac{\hat{p}_s}{m} = \frac{\hat{p}_s}{m}$. Since \hat{p}_s has no time dependence, we can integrate it easily to solve for $\hat{x}(t)$:

$$\int_{\hat{x}(0)}^{\hat{x}(t)} \partial \hat{x}(t)' = \hat{x}(t) - \hat{x}(0) = \int_{0}^{t} \frac{\hat{p}_{s}}{m} \partial t' = \frac{\hat{p}_{s}}{m} t$$

Since $\hat{x}(0)$ is just the position operator in the Schrodinger frame, i.e. $\hat{x}_s = x$, we are left with:

$$\hat{x}(t) = \frac{\hat{p}_s}{m}t + \hat{x}_s$$

Now the average position is determined via:

$$\langle \hat{x}(t) \rangle = \int_{-\infty}^{\infty} \psi(x)^* \left\{ \frac{\hat{p}_s}{m} t + \hat{x}_s \right\} \psi(x) \cdot \partial x$$
$$= -i\hbar \frac{t}{m} \int_{-\infty}^{\infty} \psi(x)^* \frac{\partial}{\partial x} \psi(x) \cdot \partial x + \int_{-\infty}^{\infty} \psi(x)^* \cdot x \cdot \psi(x) \cdot \partial x$$

We need to use Mathematica to solve this equation; see the accompanying notebook that shows:

$$\langle \frac{\hat{p}_s}{m} t \rangle = -i\hbar \frac{t}{m} \int_{-\infty}^{\infty} \psi(x)^* \frac{\partial}{\partial x} \psi(x) \cdot \partial x = \frac{t}{m} \langle \hat{p} \rangle$$

and:

$$\langle \hat{x}_s \rangle = \int_{-\infty}^{\infty} \psi(x)^* \cdot x \cdot \psi(x) \cdot \partial x = \langle \hat{x} \rangle$$

Thus,
$$\langle \hat{x}(t) \rangle^2 = \left(\frac{t}{m} \langle \hat{p} \rangle + \langle \hat{x} \rangle\right)^2 = \frac{t^2}{m^2} \langle \hat{p} \rangle^2 + 2 \frac{t}{m} \langle \hat{p} \rangle \langle \hat{x} \rangle + \langle \hat{x} \rangle^2$$
.

b) Next, we tackle $\langle \hat{x}(t)^2 \rangle$. First, expand the operator:

$$\left\{\frac{\hat{p}_s}{m}t + \hat{x}_s\right\}^2 = \frac{t^2}{m^2}\hat{p}_s^2 + \frac{\hat{p}_s}{m}t \cdot \hat{x}_s + \hat{x}_s \cdot \frac{\hat{p}_s}{m}t + \hat{x}_s^2$$

Note that $\hat{p}_s^2 = -\hbar^2 \frac{\partial^2}{\partial x^2}$ and using Mathematica we find:

$$\langle \frac{t^2}{m^2} \hat{p}_s^2 \rangle = \frac{t^2}{m^2} \langle \hat{p}_s^2 \rangle = -\hbar^2 \frac{t^2}{m^2} \int_{-\infty}^{\infty} \psi(x)^* \frac{\partial^2}{\partial x^2} \psi(x) \cdot \partial x = \frac{t^2}{m^2} \frac{\hbar^2}{4 \langle \Delta x^2 \rangle} + \frac{t^2}{m^2} \langle \hat{p} \rangle^2$$

Likewise: $\langle \frac{\hat{p}_S}{m}t\cdot\hat{x}_S+\hat{x}_S\cdot\frac{\hat{p}_S}{m}t\rangle=\frac{t}{m}\langle\hat{x}_S\hat{p}_S+\hat{p}_S\hat{x}_S\rangle=-i\hbar\frac{t}{m}\langle\hat{x}_S\frac{\partial}{\partial x}+\frac{\partial}{\partial x}\hat{x}_S\rangle=$

$$-i\hbar \frac{t}{m} \int_{-\infty}^{\infty} \psi(x)^* \left\{ x \frac{\partial}{\partial x} + \frac{\partial}{\partial x} x \right\} \psi(x) \cdot \partial x = 2 \frac{t}{m} \langle \hat{p} \rangle \langle \hat{x} \rangle$$

Based on the accompanying Mathematica notebook. Last,

$$\langle \hat{x}_s^2 \rangle = \int_{-\infty}^{\infty} \psi(x)^* \cdot x^2 \cdot \psi(x) \cdot \partial x = \langle \Delta \hat{x}^2 \rangle + \langle \hat{x} \rangle^2$$

c) Putting this all together:

$$\begin{split} \langle \Delta \hat{x}(t)^2 \rangle &= \langle \hat{x}(t)^2 \rangle - \langle \hat{x}(t) \rangle^2 \\ &= \left(\frac{t^2}{m^2} \frac{\hbar^2}{4 \langle \Delta x^2 \rangle} + \frac{t^2}{m^2} \langle \hat{p} \rangle^2 + 2 \frac{t}{m} \langle \hat{p} \rangle \langle \hat{x} \rangle + \langle \Delta \hat{x}^2 \rangle + \langle \hat{x} \rangle^2 \right) \\ &+ \left(-\frac{t^2}{m^2} \langle \hat{p} \rangle^2 - 2 \frac{t}{m} \langle \hat{p} \rangle \langle \hat{x} \rangle - \langle \hat{x} \rangle^2 \right) = \frac{t^2}{m^2} \frac{\hbar^2}{4 \langle \Delta x^2 \rangle} + \langle \Delta \hat{x}^2 \rangle \end{split}$$

3. Can you show that $\langle \Delta \hat{p}(t)^2 \rangle \langle \Delta \hat{x}(t)^2 \rangle = \frac{t^2}{m^2} \frac{\hbar^4}{16\langle \Delta x^2 \rangle^2} + \frac{\hbar^2}{4}$?

Answer: Previously we showed that $\langle \Delta \hat{p}(t)^2 \rangle = \frac{\hbar^2}{4 \langle \Delta x^2 \rangle}$, and thus:

$$\langle \Delta \hat{p}(t)^2 \rangle \langle \Delta \hat{x}(t)^2 \rangle = \frac{t^2}{m^2} \frac{\hbar^4}{16 \langle \Delta x^2 \rangle^2} + \frac{\hbar^2}{4}$$

Questions 4-6 are about a free falling quantum particle

4. Let's say a particle is in a gravitational field, the potential energy operator for which is:

$$\hat{V}(z) = mg \cdot \hat{z}$$

where m is mass and g is the gravitational constant. Note that we usually think of "z" as the up-down direction, whereas we are used to using "x" so be careful!

The total Hamiltonian is: $\widehat{H}(t) = \widehat{H}(0) = \frac{\widehat{p}_s^2}{2m} + mg \cdot \widehat{z}_s$, where \widehat{z}_s and \widehat{p}_s are the "regular" operators: $\widehat{z}_s = z$ and $\widehat{p}_s = -i\hbar \frac{\partial}{\partial z}$ in the non-time evolving Schrodinger frame. Clearly the Hamiltonian is time-independent.

- **a)** For this system can you solve the Heisenberg operator $\hat{p}(t)$? **Hint**, the commutator with \hat{p} and \hat{z} in the non-time evolving (Schrodinger frame) is: $[\hat{p}_s, \hat{z}_s] = -i\hbar$.
- **b)** Now solve for $\hat{z}(t)$. *Hint:* you will need to incorporate the result from pt. a, and you need to know the identity $[\hat{z}_s, \hat{p}_s^2] = 2i\hbar \cdot \hat{p}_s$.

Double Hint: The solution to this problem won't be like the free particle operators, rather, you will need to think about the spin operator example where you have a coupled differential equation.

Answer: a. We will first solve for $\hat{p}(t)$, for which:

$$\frac{\partial \hat{p}(t)}{\partial t} = \frac{1}{i\hbar} \left[\hat{p}(t), \hat{H}(\hat{p}_S, \hat{z}_S) \right] = \frac{1}{i\hbar} \left[\hat{p}(t), \frac{\hat{p}_S^2}{2m} + mg \cdot \hat{z}_S \right]$$

First, we will factor out the Unitary operators from: $\hat{p}(t) = e^{i\hat{H}t/\hbar} \cdot \hat{p}_S \cdot e^{-i\hat{H}t/\hbar}$:

$$\frac{\partial \hat{p}(t)}{\partial t} = \frac{e^{i\hat{H}t/\hbar}}{i\hbar} \left[\hat{p}_S, \frac{\hat{p}_S^2}{2m} + mg \cdot \hat{z}_S \right] e^{-i\hat{H}t/\hbar}$$

As \hat{p}_s commutes with $\frac{\hat{p}_s^2}{2m}$ (obviously), the problem is:

$$\frac{\partial \hat{p}(t)}{\partial t} = \frac{e^{i\hat{H}t/\hbar}}{i\hbar} [\hat{p}_S, mg \cdot \hat{z}_S] e^{-i\hat{H}t/\hbar}$$

Since $[\hat{p}_S, \hat{z}_S] = -i\hbar$, then: $[\hat{p}_S, \text{mg} \cdot \hat{z}_S] = -i\hbar \cdot mg$, and:

$$\frac{\partial \hat{p}(t)}{\partial t} = \frac{e^{i\hat{H}t/\hbar}}{i\hbar} \cdot -i\hbar \cdot mg \cdot e^{-i\hat{H}t/\hbar} = -mg$$

Now we can solve $\hat{p}(t)$ via:

$$\int_{\hat{p}(0)}^{\hat{p}(t)} \partial \hat{p}(t) = \int_{0}^{t} -mg \cdot \partial t$$

Therefore: $\hat{p}(t) = \hat{p}_S - mgt$.

b. First, $\frac{\partial \hat{z}(t)}{\partial t} = \frac{1}{i\hbar} \left[\hat{z}(t), \hat{H}(\hat{p}_S, \hat{z}_S) \right] = \frac{1}{i\hbar} \left[\hat{z}(t), \frac{\hat{p}_S^2}{2m} + mg \cdot \hat{z}_S \right]$. Next, we have to factor out the Unitary operators that are part of $\hat{x}(t)$ as:

$$\frac{\partial \hat{z}(t)}{\partial t} = \frac{1}{i\hbar} \left[\hat{z}(t), \hat{H}(\hat{p}_S, \hat{z}_S) \right] = \frac{e^{i\hat{H}t/\hbar}}{i\hbar} \left[\hat{z}_S, \frac{\hat{p}_S^2}{2m} + mg \cdot \hat{z}_S \right] e^{-i\hat{H}t/\hbar}$$

Clearly \hat{z}_S commutes with $mg \cdot \hat{z}_S$, so the problem is:

$$\frac{\partial \hat{z}(t)}{\partial t} = \frac{e^{i\hat{H}t/\hbar}}{i\hbar} \left[\hat{z}_S, \frac{\hat{p}_S^2}{2m} \right] e^{-i\hat{H}t/\hbar}$$

We have reviewed this problem before, so we know that $\left[\hat{z}_S, \frac{\hat{p}_S^2}{2m}\right] = \frac{i\hbar \cdot \hat{p}_S}{m}$, which means:

$$\frac{\partial \hat{z}(t)}{\partial t} = \frac{1}{m} e^{i\hat{H}t/\hbar} \cdot \hat{p}_S \cdot e^{-i\hat{H}t/\hbar} = \frac{\hat{p}(t)}{m}$$

Since we already know $\hat{p}(t) = \hat{p}_S - mgt$ then:

$$\frac{\partial \hat{z}(t)}{\partial t} = \frac{\hat{p}(t)}{m} = \frac{\hat{p}_S}{m} - gt$$

And therefore

$$\int_{\hat{z}_{S}}^{\hat{z}(t)} \partial \hat{z}(t) = \int_{0}^{t} \left(\frac{\hat{p}_{S}}{m} - gt \right) \cdot \partial t$$

Therefore $\hat{z}(t) = \hat{z}_S + \frac{t}{m}\hat{p}_S - \frac{g \cdot t^2}{2}$

5. For the free particle wavepacket in a gravitational field:

$$\psi(z) = \left(\frac{1}{2\pi\langle\Delta\hat{z}^2\rangle}\right)^{\frac{1}{4}} e^{\frac{-(z-\langle\hat{z}\rangle)^2}{4\langle\Delta\hat{z}^2\rangle} + \frac{i}{\hbar} \cdot z \cdot \langle\hat{p}\rangle}$$

calculate: **a)** $\langle \hat{p}(t) \rangle^2$ **b)** $\langle \hat{p}(t)^2 \rangle$ **c)** $\langle \Delta \hat{p}(t)^2 \rangle = \langle \hat{p}(t)^2 \rangle - \langle \hat{p}(t) \rangle^2$

Answer:

a) First, we put the operators into the Heisenberg form:

$$\begin{split} \langle \hat{p}(t) \rangle &= \int\limits_{-\infty}^{\infty} \psi(z)^* \, (\hat{p}_S - \, mg \cdot t) \psi(z) \cdot \partial z \\ &= \int\limits_{-\infty}^{\infty} \psi(z)^* \, (-i\hbar) \frac{\partial}{\partial z} \psi(z) \cdot \partial z - \int\limits_{-\infty}^{\infty} \psi(z)^* \, (mg \cdot t) \psi(z) \cdot \partial z = \langle \hat{p} \rangle - mgt \end{split}$$

where we used Mathematica to solve: $\int_{-\infty}^{\infty} \psi(z)^* (-i\hbar) \frac{\partial}{\partial z} \psi(z) \cdot \partial z = \langle \hat{p} \rangle$:

Integrate [Conjugate [f[x]] *
$$(-i*h)*D[f[x], x], \{x, -Infinity, Infinity\},$$

Assumptions $\rightarrow \{h > 0, dXsq > 0, avex > 0, avep > 0\}$]

Out[•]= avep

Note that we need to know $\langle \hat{p}(t) \rangle^2$ for the final answer, which is clearly:

$$\langle \hat{p}(t) \rangle^2 = (\langle \hat{p} \rangle - mgt)^2 = \langle \hat{p} \rangle^2 - 2\langle \hat{p} \rangle \cdot mgt + (mgt)^2$$

b) Likewise,
$$\hat{p}(t)^2 = (\hat{p}(0) - mgt)^2 = \hat{p}(0)^2 - 2 \cdot mgt \cdot \hat{p}(0) + (mgt)^2$$

Hence:

$$\begin{split} \langle \hat{p}(t)^2 \rangle &= \int\limits_{-\infty}^{\infty} \psi(z)^* \{ \hat{p}_s^2 - 2 \cdot mgt \cdot \hat{p}_s + (mgt)^2 \} \psi(z) \cdot \partial z \\ &= \int\limits_{-\infty}^{\infty} \psi(z)^* \cdot \hat{p}_s^2 \cdot \psi(z) \cdot \partial z - 2mgt \cdot \int\limits_{-\infty}^{\infty} \psi(z)^* \left(-i\hbar \right) \frac{\partial}{\partial z} \psi(z) \cdot \partial z \\ &+ (mgt)^2 \int\limits_{-\infty}^{\infty} \psi(z)^* \psi(z) \cdot \partial z \end{split}$$

It should be clear from pt. a that:

$$-2mgt \cdot \int_{-\infty}^{\infty} \psi(z)^* (-i\hbar) \frac{\partial}{\partial z} \psi(z) \cdot \partial z = -2 \cdot mgt \cdot \langle \hat{p} \rangle$$

and since $(mgt)^2$ are constants: $(mgt)^2 \int_{-\infty}^{\infty} \psi(z)^* \psi(z) \cdot \partial z = (mgt)^2$

The only thing to use Mathematica for is $\langle \hat{p}_s^2 \rangle = \langle -\hbar^2 \frac{\partial^2}{\partial z^2} \rangle$:

$$\langle \hat{p}_s^2 \rangle = -\hbar^2 \int_{-\infty}^{\infty} \psi(z)^* \frac{\partial^2}{\partial z^2} \psi(z) \cdot \partial z = \frac{\hbar^2}{4 \langle \Delta z^2 \rangle} + \langle \hat{p} \rangle^2$$

as shown below:

 $\label{eq:local_$

$$\textit{Out[o]} = avep^2 + \frac{h^2}{4 \, dXsq}$$

c) Thus:

$$\langle \left(\Delta \hat{p}(t)\right)^{2} \rangle = \langle \hat{p}(t)^{2} \rangle - \langle \hat{p}(t) \rangle^{2} =$$

$$\frac{\hbar^{2}}{4\langle \Delta z^{2} \rangle} + \langle \hat{p} \rangle^{2} - 2 \cdot mgt \cdot \langle \hat{p} \rangle + (mgt)^{2} - \langle \hat{p} \rangle^{2} + 2\langle \hat{p} \rangle \cdot mgt - (mgt)^{2} = \frac{\hbar^{2}}{4\langle \Delta z^{2} \rangle}$$

6. Worked out for you in the appendix is: $\langle \left(\Delta \hat{z}(t) \right)^2 \rangle = \langle \Delta \hat{z}^2 \rangle + \frac{\hbar^2 \cdot t^2}{4 \langle \Delta z^2 \rangle m^2}$

Can you show that $\langle \Delta \hat{p}(t)^2 \rangle \langle \Delta \hat{z}(t)^2 \rangle = \frac{\hbar^2}{4} + \frac{\hbar^4 \cdot t^2}{16\langle \Delta \hat{z}^2 \rangle^2 m^2}$?

Answer: Previously we showed that $\langle \Delta \hat{p}(t)^2 \rangle = \frac{\hbar^2}{4\langle \Delta z^2 \rangle}$, and thus:

$$\langle \Delta \hat{p}(t)^2 \rangle \langle \Delta \hat{z}(t)^2 \rangle = \frac{\hbar^2}{4 \langle \Delta \hat{z}^2 \rangle} \left(\langle \Delta \hat{z}^2 \rangle + \frac{\hbar^2 \cdot t^2}{4 \langle \Delta \hat{z}^2 \rangle m^2} \right) = \frac{\hbar^2}{4} + \frac{\hbar^4 \cdot t^2}{16 \langle \Delta \hat{z}^2 \rangle^2 m^2}$$

Appendix

Derivation of the identity in question 6:

For the free particle wavepacket $\psi(z) = \left(\frac{1}{2\pi\langle\Delta\hat{z}^2\rangle}\right)^{\frac{1}{4}} e^{\frac{-(z-\langle\hat{z}\rangle)^2}{4\langle\Delta\hat{z}^2\rangle} + \frac{i}{\hbar} \cdot z \cdot \langle\hat{p}\rangle}$, we will show that

$$\langle \Delta \hat{z}(t)^2 \rangle = \langle \hat{z}(t)^2 \rangle - \langle \hat{z}(t) \rangle^2 = \langle \Delta \hat{z}^2 \rangle + \frac{\hbar^2 \cdot t^2}{4 \langle \Delta z^2 \rangle m^2}$$

in a gravitational field.

First, we start with $\langle \hat{z}(t) \rangle$ using $\hat{z}(t) = \hat{z}_s + \frac{t}{m} \hat{p}_s - \frac{gt^2}{2}$:

$$\begin{split} \langle \hat{z}(t) \rangle &= \int\limits_{-\infty}^{\infty} \psi(z)^* \left(\hat{z}_s + \frac{t}{m} \hat{p}_s - \frac{g \cdot t^2}{2} \right) \psi(z) \cdot \partial z \\ &= \int\limits_{-\infty}^{\infty} \psi(z)^* \cdot z \cdot \psi(z) \cdot \partial z + \frac{t}{m} \int\limits_{-\infty}^{\infty} \psi(z)^* \cdot \hat{p}_s \cdot \psi(z) \cdot \partial z - \left(\frac{gt^2}{2} \right) \int\limits_{-\infty}^{\infty} \psi(z)^* \cdot \psi(z) \cdot \partial z \end{split}$$

We use Mathematica to solve the 1st term: $\int_{-\infty}^{\infty} \psi(z)^* \cdot z \cdot \psi(z) \cdot \partial z = \langle \hat{z} \rangle$ as shown:

$$ln[*] = f[x] = (1/(2*Pi*dXsq))^(1/4)*Exp[-(1/4/dXsq)*(x-avex)^2+i/h*x*avep]$$

$$\textit{Out[o]} = \frac{\left(\frac{1}{\text{dXsq}}\right)^{1/4} \, \frac{\text{i avep x}}{\text{e}^{\text{h}}} - \frac{\left(-\text{avex} + \text{x}\right)^2}{4 \, \text{dXsq}}}{\left(2 \, \pi\right)^{1/4}}$$

Out[@]= avex

As part of the question you show that $\int_{-\infty}^{\infty} \psi(z)^* \cdot \hat{p}_s \cdot \psi(z) \cdot \partial z = \langle \hat{p} \rangle$, thus:

$$\frac{t}{m} \int_{-\infty}^{\infty} \psi(z)^* \cdot \left\{ -i\hbar \frac{\partial}{\partial z} \right\} \cdot \psi(z) \cdot \partial z = \frac{\langle \hat{p} \rangle \cdot t}{m}$$

and due to the fact that $\frac{g \cdot t^2}{2m}$ are just constants:

$$\left(\frac{gt^2}{2}\right)\int_{-\infty}^{\infty}\psi(z)^*\cdot\psi(z)\cdot\partial z=\frac{gt^2}{2}$$

As a result:

$$\langle \hat{z}(t) \rangle^2 = \left(\langle \hat{z} \rangle + \frac{\langle \hat{p} \rangle \cdot t}{m} - \frac{gt^2}{2} \right)^2 = \langle \hat{z} \rangle^2 + \frac{2 \langle \hat{z} \rangle \langle \hat{p} \rangle \cdot t}{m} - g \langle \hat{z} \rangle t^2 + \frac{\langle \hat{p} \rangle^2 \cdot t^2}{m^2} - \frac{g \langle \hat{p} \rangle \cdot t^3}{m} + \left(\frac{gt^2}{2} \right)^2$$

Next we solve $\langle \hat{z}(t)^2 \rangle$ using:

$$\hat{z}(t)^{2} = \left(\hat{z}_{s} + \frac{t}{m}\hat{p}_{s} - \frac{gt^{2}}{2}\right)^{2}$$

$$= \hat{z}_{s}^{2} + \frac{t}{m}\hat{z}_{s} \cdot \hat{p}_{s} + \frac{t}{m}\hat{p}_{s} \cdot \hat{z}_{s} - gt^{2}\hat{z}_{s} + \frac{t^{2}}{m^{2}}\hat{p}_{s}^{2} - \frac{gt^{3}}{m}\hat{p}_{s} + \left(\frac{gt^{2}}{2}\right)^{2}$$

Most of the terms in $\langle \hat{z}(t)^2 \rangle$ can be solved with no need to do any real evaluation, especially when we use results from question 3 such as $\langle \hat{p}(0)^2 \rangle = \frac{\hbar^2}{4\langle \Delta z^2 \rangle} + \langle \hat{p} \rangle^2$:

$$-\int_{-\infty}^{\infty} \psi(z)^* \cdot (gt^2 \cdot \hat{z}_s) \cdot \psi(z) \cdot \partial z = -g\langle \hat{z} \rangle t^2$$

$$\int_{-\infty}^{\infty} \psi(z)^* \cdot \left(\frac{t^2}{m^2} \hat{p}_s^2\right) \cdot \psi(z) \cdot \partial z = \frac{\hbar^2 \cdot t^2}{4\langle \Delta z^2 \rangle m^2} + \frac{\langle \hat{p} \rangle^2 \cdot t^2}{m^2}$$

$$-\int_{-\infty}^{\infty} \psi(z)^* \cdot \left(\frac{gt^3}{m} \hat{p}_s\right) \cdot \psi(z) \cdot \partial z = -\frac{g\langle \hat{p} \rangle t^3}{m}$$

$$\int_{-\infty}^{\infty} \psi(z)^* \cdot \left(\frac{gt^2}{2}\right)^2 \cdot \psi(z) \cdot \partial z = \left(\frac{gt^2}{2}\right)^2$$

The only terms needing evaluation are:

$$\int_{-\infty}^{\infty} \psi(z)^* \cdot \hat{z}(0)^2 \cdot \psi(z) \cdot \partial z = \langle \hat{z} \rangle^2 + \langle \Delta \hat{z}^2 \rangle$$

 $\label{eq:local_$

and:

$$\int_{-\infty}^{\infty} \psi(z)^* \cdot \left(\frac{t}{m} \cdot \hat{z}_s \hat{p}_s\right) \cdot \psi(z) \cdot \partial z = -\frac{i\hbar \cdot t}{m} \int_{-\infty}^{\infty} \psi(z)^* \cdot z \cdot \frac{\partial}{\partial z} \cdot \psi(z) \cdot \partial z = \frac{i\hbar \cdot t}{2m} - \frac{i^2 \hbar \cdot t}{m} \frac{\langle \hat{p} \rangle \langle \hat{z} \rangle}{\hbar}$$

$$= \frac{i\hbar \cdot t}{2m} + \frac{\langle \hat{p} \rangle \langle \hat{z} \rangle \cdot t}{m}$$

The above is from the following Mathematica script:

Likewise:

$$\int_{-\infty}^{\infty} \psi(z)^* \cdot \left(\frac{t}{m} \cdot \hat{p}_s \hat{z}_s\right) \cdot \psi(z) \cdot \partial z = -\frac{i\hbar \cdot t}{m} \int_{-\infty}^{\infty} \psi(z)^* \cdot \frac{\partial}{\partial z} z \cdot \psi(z) \cdot \partial z$$
$$= -\frac{i\hbar \cdot t}{2m} - \frac{i^2 \hbar \cdot t \cdot \langle \hat{p} \rangle \langle \hat{z} \rangle}{m \hbar} = -\frac{i\hbar \cdot t}{2m} + \frac{\langle \hat{p} \rangle \langle \hat{z} \rangle \cdot t}{m}$$

 $ln[*]:= -i*h*t/m*Integrate[Conjugate[f[x]]*D[x*f[x],x], {x,-Infinity,Infinity}, Assumptions <math>\rightarrow \{h > 0, dXsq > 0, avex > 0, avep > 0\}$]

$$\textit{Out[σ]=} \ - \ \frac{ \mbox{$\dot{\mathbb{L}}$} \ \left(\frac{1}{2} \ + \ \frac{\mbox{$\dot{\mathbb{L}}$} \ avep\,avex}{h} \right) \ \ h \ t}{m}$$

Putting this all together:

$$\begin{split} \langle \hat{z}(t)^2 \rangle &= \langle \hat{z} \rangle^2 + \langle \Delta \hat{z}^2 \rangle + \frac{i\hbar \cdot t}{2m} + \frac{\langle \hat{\mathbf{p}} \rangle \langle \hat{\mathbf{z}} \rangle \cdot t}{m} - \frac{i\hbar \cdot t}{2m} + \frac{\langle \hat{\mathbf{p}} \rangle \langle \hat{\mathbf{z}} \rangle \cdot t}{m} - g \langle \hat{z} \rangle \cdot t^2 + \frac{\hbar^2 \cdot t^2}{4 \langle \Delta z^2 \rangle m^2} \\ &\quad + \frac{\langle \hat{p} \rangle^2 \cdot t^2}{m^2} - \frac{\langle \hat{p} \rangle g t^3}{m} + \left(\frac{g t^2}{2} \right)^2 \\ &\quad = \langle \hat{z} \rangle^2 + \langle \Delta \hat{z}^2 \rangle + \frac{2 \langle \hat{\mathbf{p}} \rangle \langle \hat{\mathbf{z}} \rangle \cdot t}{m} - g \langle \hat{z} \rangle t^2 + \frac{\hbar^2 \cdot t^2}{4 \langle \Delta z^2 \rangle m^2} + \frac{\langle \hat{p} \rangle^2 \cdot t^2}{m^2} - \frac{\langle \hat{p} \rangle \cdot g t^3}{m} + \left(\frac{g t^2}{2} \right)^2 \end{split}$$

Hence:

$$\begin{split} \langle \Delta \hat{z}(t)^2 \rangle &= \langle \hat{z}(t)^2 \rangle - \langle \hat{z}(t) \rangle^2 = \\ \langle \hat{z} \rangle^2 + \langle \Delta \hat{z}^2 \rangle + \frac{2 \langle \hat{p} \rangle \langle \hat{z} \rangle \cdot t}{m} - g \langle \hat{z} \rangle \cdot t^2 + \frac{\hbar^2 \cdot t^2}{4 \langle \Delta z^2 \rangle m^2} + \frac{\langle \hat{p} \rangle^2 \cdot t^2}{m^2} - \frac{g \langle \hat{p} \rangle \cdot t^3}{m} + \left(\frac{g t^2}{2} \right)^2 \\ - \langle \hat{z} \rangle^2 - \frac{2 \langle \hat{z} \rangle \langle \hat{p} \rangle \cdot t}{m} + g \langle \hat{z} \rangle \cdot t^2 - \frac{\langle \hat{p} \rangle^2 \cdot t^2}{m^2} + \frac{g \langle \hat{p} \rangle \cdot t^3}{m} - \left(\frac{g t^2}{2} \right)^2 \\ &= \langle \Delta \hat{z}^2 \rangle + \frac{\hbar^2 \cdot t^2}{4 \langle \Delta z^2 \rangle m^2} \end{split}$$

Example calculations of the properties of the ground state vibrational wavefunction using Mathematica

Given the normalized wavefunction:
$$\psi(x) = \left(\frac{m \cdot \omega}{\pi \hbar}\right)^{\frac{1}{4}} e^{\frac{-m \cdot \omega \cdot x^2}{2\hbar}}$$

$$f[x] = (m*w/Pi/h)^{(1/4)} * Exp[-m*w*x*x/2/h]$$

Check for normalization: $\int_{-\infty}^{\infty} \psi(x)^* \cdot \psi(x) \cdot \partial x$

Integrate[Conjugate[
$$f[x]$$
] * $f[x]$, {x, -Infinity, Infinity}, Assumptions \rightarrow {m > 0, w > 0, h > 0}]

$$Out[\ \]=\ 1$$

Calculate the derivative of the wavefunction: $\frac{\partial \psi(x)}{\partial x}$:

$$ln[\circ]:= D[f[x], x]$$

$$\text{Out[]} = -\frac{e^{-\frac{m w x^2}{2 h}} m w \left(\frac{m w}{h}\right)^{1/4} x}{h \pi^{1/4}}$$

Calculate the double derivative of the wavefunction: $\frac{\partial^2 \psi(x)}{\partial x^2}$:

$$ln[\circ] := D[D[f[x], x], x]$$

$$\text{Out[*]=} \ - \frac{\text{e}^{-\frac{\text{m w } x^2}{2 \text{ h}}} \text{m w } \left(\frac{\text{m w}}{\text{h}}\right)^{1/4}}{\text{h } \pi^{1/4}} + \frac{\text{e}^{-\frac{\text{m w } x^2}{2 \text{ h}}} \text{m}^2 \text{w}^2 \left(\frac{\text{m w}}{\text{h}}\right)^{1/4} \text{x}^2}{\text{h}^2 \pi^{1/4}}$$

Average position in the Schrodinger representation: $\langle \hat{x}_s \rangle = \int_{-\infty}^{\infty} \psi(x)^* \cdot x \cdot \psi(x) \cdot \partial x$

Integrate[Conjugate[f[x]] * x * f[x], {x, -Infinity, Infinity},

Assumptions
$$\rightarrow$$
 {m > 0, w > 0, h > 0}]

Average position^2 in the Schrodinger representation: $\langle \hat{x}_s^2 \rangle = \int_{-\infty}^{\infty} \psi(x)^* \cdot x^2 \cdot \psi(x) \cdot \partial x$

Integrate[Conjugate[f[x]] * x * x * f[x], {x, -Infinity, Infinity},

Assumptions
$$\rightarrow$$
 {m > 0, w > 0, h > 0}]

Out[
$$\circ$$
]= $\frac{h}{2 \text{ m w}}$

Average momentum in either the Heisenberg or Schrodinger representation:

$$\begin{split} \langle \hat{p} \rangle &= -i\hbar \int_{-\infty}^{\infty} \psi(x)^* \frac{\partial}{\partial x} \psi(x) \cdot \partial x : \\ &\text{Integrate[Conjugate[f[x]] * D[f[x], x], {x, -Infinity, Infinity}, \\ &\text{Assumptions} \rightarrow \{\text{m} > 0, \text{w} > 0, \text{h} > 0\}] \end{split}$$

Average momentum^2 in either the Heisenberg or Schrodinger representation:

$$\begin{split} \langle \hat{p} \rangle &= -\hbar^2 \int_{-\infty}^{\infty} \psi(x)^* \frac{\partial^2}{\partial x^2} \psi(x) \cdot \partial x : \\ & \text{In[*]:= -h * h * Integrate[Conjugate[f[x]] * D[D[f[x], x], x], {x, -Infinity, Infinity}, \\ & \text{Assumptions} \rightarrow \{m > 0, w > 0, h > 0\}] \end{split}$$

$$Out[*] = \frac{h m w}{2}$$

Uncertainty relation $(\langle \hat{x}_s^2 \rangle - \langle \hat{x}_s \rangle)(\langle \hat{p}_s^2 \rangle - \langle \hat{p}_s \rangle) = \left(\frac{\hbar}{2m\omega} - 0\right)\left(\frac{\hbar m\omega}{2} - 0\right) = \frac{\hbar}{4}$