Chem 542 Problem Set 9

Questions 1-3 are about a quantum particle on a flat surface

Io—@—@n?i
1. A wavepacket i (x) = (2 (sz))“ e ) E P g placed on a flat potential energy
surface, meaning H(p) = =, where p, is the “regular” momentum operator: p, = —ih%

in the Schrodinger frame. Please calculate:

a) (5(1))* b) (B(t)*) €) (Ap(1)?) = (B(H)?) — (B(D))?

using the Heisenberg picture. Note that the operator for p(t) has to be derived, but your
book can guide you on this part.

Answer: a) First, we put the operators into the Heisenberg form:

ap(t) _ 1
- =7 [P0, A(®)]

ihﬂ?) = ih-2 2 = 0. Plugging this into the

From class we know that [5(t), H(p)] =

ap(t)

above yields = 0. We can integrate to solve for p(t):

f;g)) ap(t) = p(t) —p(0) = 0 and thus p(t) = p(0), where p(0) is just the position

operator in the Schrodinger frame, i.e. pg = —ihaa—x. As a result,

[ G
BO) = =it [ W) 56 -0x = ()

And as a result: (p(t))? = (p)>.

b) Likewise,
2
4(Ax2)

(p2) = wau) 2 ()0 T (p)?

C) Thus {Ap(£)?) = (A(D)?) — (PO)? = —is + ()% — (p) = 7

This makes sense because the definition of a minimum uncertainty wavepacket
2
requires: (Ap2)(Ax?) = -

I —(x-@n?

2. For the free particle wavepacket ¥ (x) = (211(:22))4 e 4(42?)

+ox-(p)

, calculate:

a) (x(6))* b) (2(6)?) €) (A%()?) = (X(£)*) — (2(D))?



~ AZ -
using the Heisenberg picture. Note that for a free particle H(p) = ;’—:n, where p; is the
‘regular” momentum operator in the Schrodinger frame. Note that the operator for x(t)
has to be derived, but your book can guide you on this part.

Answer: a) First, we put the operators into the Heisenberg form:

9R(6) 1
ot  ih

[2(®), A®)]

= H D /‘2 7 - - -
From class we know that [£(¢), H(p)] = ihag—g’) = iha%f—; = ik 2. Plugging this into the
ax(t) 11, =~ A 1., Ds Ps A .
= ==[2(), H®)] = - ir2 = . Since f; has no time dependence, we

can integrate it easily to solve for x(t):

above yields

() t

f a%(t) = £(t) — £(0) =f

£(0) 0

Ps

Ps e = Psy
m

m

Since x(0) is just the position operator in the Schrodinger frame, i.e. X; = x, we are left
with:

oy P, s
x(t)=—t+Xx
O ="t +%

Now the average position is determined via:
GO) = [ 9o [Eerzfpe -ox
(o] a (o]
=i [ 9@ v -ox+ [ W@ xo w6 ox

We need to use Mathematica to solve this equation; see the accompanying notebook
that shows:

b ot [0
E =i [ pe" 00 -0x = —(p)
and:

(%) = f Y x - Px) - dx = (2)

Thus, (R(0)? = (L) +(®) =32 + 22 (p)(R) + (2)%



b) Next, we tackle (x(t)?). First, expand the operator:

A

2 2
p t p Ps
{Est+xs} = zps —St Xs + X - EH_

2
Note that p2 = —hza% and using Mathematica we find:

t? t? t?  h? t?
—ZPSZ) = —(psz) = - f ll’(x) l/)(x) Ox = _24(A—xz)+m(p)2
f A oA Lt . @ 0 L
Likewise: ( £ R+ R B8 ) (xsps + PsXs) = _th<xSa_+£x5) =

Lt (9 0 t
—ih— j¢(x) {xa+ax}lp(x) 0x = 2— (p)R)
Based on the accompanying Mathematica notebook. Last,
(%2) = j¢(x)*-x2-t/)(x)-ax=<A9?2>+<9?>2

C) Putting this all together:
(Ax()?) = (2(t)?) — ((1))?
_t2 h? t? ZZtAA g2 2
(mz 4(Ax2)+_(p) E(P)<x)+( x°) + (%) )

£2 N o N 2 p2 -
+<‘W<P> —za<p><x>—<x>> +(822)

24(A 2)
3. Can you show that (Ap()))(AR(6)?) = S + Lo
Answer: Previously we showed that (Ap(t)?) = <A22> and thus:
2 h4 hz

(BPEPHARW) = 51 +



Questions 4-6 are about a free falling quantum particle

4. Let’s say a particle is in a gravitational field, the potential energy operator for which
Is:

V(z)=mg-2

where m is mass and g is the gravitational constant. Note that we usually think of “z” as

the up-down direction, whereas we are used to using “x” so be careful!

—~ —~ A2
The total Hamiltonian is: H(t) = H(0) = f—; + mg - Z, where Z; and p, are the “regular”
operators: Z; = z and pg = —ih% in the non-time evolving Schrodinger frame. Clearly

the Hamiltonian is time-independent.

a) For this system can you solve the Heisenberg operator p(t)? Hint, the commutator
with p and Z in the non-time evolving (Schrodinger frame) is: [p, Z;] = —ih.

b) Now solve for Z(t). Hint: you will need to incorporate the result from pt. a, and you
need to know the identity [Z,, p2] = 2ih - Ps.

Double Hint: The solution to this problem won'’t be like the free particle operators,
rather, you will need to think about the spin operator example where you have a
coupled differential equation.

Answer: a. We will first solve for p(t), for which:

M) _ Lracy fra s ] - L[are P2 .
o = mlPOHGs 2] = 5 [p(t Vom T ZS]
First, we will factor out the Unitary operators from: p(t) = e#t/" - pg - e~/

(’)ﬁ(t) _ eiﬁt/h
at  ih

—iAt/h

p?
A S N
>+ mg -

As p; commutes with % (obviously), the problem is:
aﬁ(t) _ eiﬁt/h

ot ih
Since [ps, Zg] = —ih, then: [ps, mg - Zg] = —ih - mg, and:

—iAt/h

[Ps,mg - Zs]e

aﬁ(t) _ eiﬁt/h
ot ih

Now we can solve p(t) via:

—ift/h —

-—ih-mg-e —-mg



p(t) t

f ap(t) = f—mg-at
p(0) 0
Therefore: p(t) = ps — mgt.

b. First, az(t)

Unitary operators that are part of x(t) as:

[z“(t),ﬁ(ﬁs, z9)| = %[Z(t) = +mg - zs] Next, we have to factor out the

aZ(t) 1 eLHt/h i 132 X ;.
5t [z(t) H(ps,zs)] T Zs,ﬁ-l- mg - 25| e"tHL/R

Clearly Zg commutes with mg - Zs, so the problem is:

5 iHt/h A 2

021) _ el. ZAS,pi p—iflt/h
Jt ih 2m
~ 2 i3 A
We have reviewed this problem before, so we know that [25, Zim] = ‘hn’l’s, which means:
aZA(t) — ieiﬁt/h . }35 . e—iﬁt/fl — ﬁ(t)
Jat m m

Since we already know p(t) = ps — mgt then:
02(t) _p(O) _Bs
Jat m m

And therefore

Therefore Z(t) = Zg + %ﬁs - —

5. For the free particle wavepacket in a gravitational field:

1

7z —(z-(2)?
)49 4(027) +52(P)

_ 1

V@ = (377
calculate: @) (p(2))* b) (B(t)?) C) (Ap(£)?) = (B(t)?) — (P(b))?
Answer:

a) First, we put the operators into the Heisenberg form:



B(©) = f V(@) (s — mg - OP(z) - 9z
o0 . a o0
= [ v i@ 0= [ WG g 0p@) - 02 = B - mge

where we used Mathematica to solve: ffmlp(z)*(—ih)%lp(z) -0z = (p):

Integrate[Conjugate[f[x]] * (-2 *h) *D[f[x], x], {X, - Infinity, Infinity},
Assumptions -» {h > @, dXsq > @, avex > @, avep > 0} ]

avep

Note that we need to know (p(t))? for the final answer, which is clearly:
B))* = (P) — mgt)* = (p)* — 2(p) - mgt + (mgt)?
b) Likewise, p(t)? = (p(0) — mgt)? = p(0)? — 2 - mgt - p(0) + (mgt)?

Hence:

PO = [ @) 42 - 2-mge s+ (mge W) -0z
[o0) (o) . a
= [ @ g2 w0z 2mge- [ wGy (-im 5w -0z
YO RTGRTORY
It should be clear from pt. a that:
[0e] . a
~amgt- [ WGy (-im) -y () - 02 = ~2-mgt - ()

and since (mgt)? are constants: (mgt)? ffooolp(z)* Y(z) - 0z = (mgt)?

The only thing to use Mathematica for is (p2) = (—h? :—;):

[ n?
3) = 1" [ 9@ 9@ 02 = i+ (B

as shown below:



Integrate[Conjugate[f[x]] * (-hxh) *D[D[f[x], x], x], {X, -Infinity, Infinity},
Assumptions -» {h > @, dXsq > @, avex > @, avep > 0} ]
h2
4 dXsq

avep? +

C) Thus:

(25(D)*) = (B2 — (H(B))? =
? 2

a7~ 2 mgt s () + (mgt)? — (§)* +206) - mgt — (mgt)? = g

h2t2
4(Az2)ym?

6. Worked out for you in the appendix is: ((Aé(t))z) = (A2?%) +

h*-t?
16(A22)°m2 "

2
Can you show that (Ap(t)2)(A2(t)?) = % +
hZ
4(Az2)’
hZ . t2 hZ h4 . t2
—_— =t
4(A22)m2> 4 16(A22)*m?2

Answer: Previously we showed that (Ap(t)?) = and thus:

2

4(A22)

(Ap(0)*NA2(1)?) = ((Aiz) +



Appendix

Derivation of the identity in question 6:

For the f icl k - e D ill show th
or the free particle wavepacket y(z) = (ZH<A22)) e , we will show that
2_t2
5 2\ — (5 2 LY 2 _ 52
(Az(6)*) = (2(6)*) — (2(0))* = (AzZ >+4(Tz)mz

in a gravitational field.

First, we start with (Z(t)) using Z(t) = Z; + iﬁs — g:
o [, . gt 9
v = [ wer (2 +—p- S v or

[o0] (o0} 2 oo
- [wer zv@ 0t [wersev@-o- (%) [ e ve -0

We use Mathematica to solve the 15t term: f_°°oo¢(z)* -z -Y(z) 0z = (Z) as shown:

fIx] = (1/ (2*PixdXsq))~(1/4) *Exp[-(1/4/dXsq) * (x- avex) 2+ 1/ h* x* avep]

1avep X —avex+X 2

( 1 ) 1/4 h 4dx

1 e sq
dXsq

(27T>1/4

Integrate[Conjugate[f[x]] * x* f[x], {x, - Infinity, Infinity},
Assumptions » {h > @, dXsq > @, avex > @, avep > 0} ]

avex

As part of the question you show that ffooozp(z)* - Ps - Y(z) - 0z = (p), thus:
[ or-fingdveo o
— [ W@ =i (2) 9z =

42
and due to the fact that % are just constants:

2

2 oo
(%) [wervwe-0 =2

As a result:

5) - 2\ 2 2UEWHY - 5)2 . £2 5\ . 43 2\ 2
@)t g;) _ G+ <Z),<:) t_g<2>t2+(p>m2t gyt +<£>

(@) = <(2)+T—— m 2



Next we solve (Z(t)?) using:

gt*\’
2(t)? = <Zs + —ps — T)

P A . tr o ogt?  [gt?
=252+EZS'PS+EP5'Zs—thZs+WP52—Wps*'(T

Most of the terms in (2(t)?) can be solved with no need to do any real evaluation,
especially when we use results from question 3 such as (p(0)?) =

4(AZ2) ( >2
- [w@r e 29 9@- 02 = —g0)

hZ . t2 (mz . t2
f Y(2) - ( zps> Y(z) 0z = 4(Az2)ym? + m2

(o (gt g
—_f e -(Wps)w(z)-az—— .

® 2\ 2 2\ 2
[wer- (%) () 0z = (%)

The only terms needing evaluation are:
(00}

f W@)* - 2000 Y(2) - 9z = (8)? + (A22)

Integrate[Conjugate[f[x]] * x* x* f[x], {x, -Infinity, Infinity},
Assumptions » {h > @, dXsq > @, avex > @, avep > 0}]

avex® + dXsq

and:

ih-t i?h-t{(P)2)
m h

jIP(Z) Zsps> Y(2) - az——— Jd;() cge— ¢(Z) az—
+(p)(Z) t

2m m

The above is from the following Mathematica script:



-i*h*t/mx Integrate[Conjugate[f[x]] *x*D[f[x], x], {X, -Infinity, Infinity},
Assumptions -» {h > @, dXsq > @, avex > @, avep > 0}]

i (7l+w) ht

Likewise:
[ ihot [ 0
[w@ - (5p) w02 === [ 9@ 52w -0z
- L het Phet-(pX) | ihet (pYD)-t
- 2m mh T 2m * m

-1 % h*t/mx Integrate[Conjugate[f[x]] *D[x*f[x], x], {x, - Infinity, Infinity},
Assumptions -» {h > @, dXsq > @, avex > @, avep > 0} ]

i (74 e ht

m

Putting this all together:

. . ) ih-t (PNZ)-t ih-t (PNZ)-t . h% - t?
<Z(t)2> =<Z>2+<AZZ)+ 2m + m B 2m + m _g<Z).t2 +4_(T2)n12
5)2 . 42 A\ 743 2\ 2
2 21: _ (Pt +<gt>
m m 2
2(P)(Z) - R2 - 2 AV2 L 42 A\ 23 2\ 2
= oty BB gy o S B ()
Hence:
(A2(6)?) = (2()%) — (2()* =
, o 2@t RZ-t2 (p)2-t2 gp)-t3  [gt?)?
(z)2+(Azz)+—m —g(z)'t2+4<AZZ)m2 T +<2>
NP - AV2 . 42 A\ . +3 2\ 2
e RO oy ) 2t L9p-t _<gt>
m m m 2
2,42
= (A2%) + ot

4(Az%)m?



Example calculations of the properties of the ground state
vibrational wavefunction using Mathematica

. . . mea\g e
Given the normalized wavefunction: ¥ (x) = (F) e z2h

fIx] = (mxw/Pi/h)~(1/4) xEXp[-m*wx XX/ 2/ h]

Check for normalization: [~ 1(x)* - (x) - 9x

Integrate[Conjugate[f[x]] » f[x], {x, -Infinity, Infinity},
Assumptions » {m >0, w> 0, h>0}]

1
Calculate the derivative of the wavefunction: a‘g—ix):
DLF[x], x]
mWX2
e 2h mw (™) V4x
_ h
h Ti/4
2
Calculate the double derivative of the wavefunction: 2 E;I:C(ZX):
DID[f[x], x], x]
7mwx2 7mwx2
e 2h mw(m>1/4 e 2h mzwz<u>1/4xz
h h

- +
h7T1/4 h2 7T1/4

Average position in the Schrodinger representation: (x,) = f_ooootp(x)* ~x - P(x) - 0x

Integrate[Conjugate[f[x]] * x* f[x], {x, -Infinity, Infinity},
Assumptions » {m >0, w> 0, h>0}]

%]
Average position”2 in the Schrodinger representation: (£2) = ffooot/)(x)* cx?-P(x) - 0x

Integrate[Conjugate[f[x]] * x* x* f[x], {x, -Infinity, Infinity},
Assumptions » {m >0, w>0, h>0}]

h
2mw




Average momentum in either the Heisenberg or Schrodinger representation:

(B) = =ik [, ()" 7P (x) - dx:

-1 % h* Integrate[Conjugate[f[x]] *D[f[x], x], {x, -Infinity, Infinity},
Assumptions » {m> 0, w> 0, h> 0}]

0

Average momentum”2 in either the Heisenberg or Schrodinger representation:
N 0 * 0? .
P)=—-h*[__px) oz P () - ox:
-h*h=*Integrate[Conjugate[f[x]] *D[D[f[x], x], x], {x, -Infinity, Infinity},
Assumptions » {m> 0, w> 9, h> 0}]

hmw
2

Uncertainty relation ((2) — () ((p2) — (ps)) = (% _ 0) (hm_w _ ) h

2



