
Problem Set 10 

1. Infrared Spectroscopy. Simple linear spectroscopy transition moments (i.e. how 

strong an absorption is) can be calculated from the dipole operator: 

⟨𝜓𝑓|−𝑒 ∙ �̂�|𝜓𝑖⟩ = −𝑒 ∙ ∫𝜓𝑓 ∙ 𝑑 ∙ 𝜓𝑖 ∙ 𝜕𝜏 

where �̂� = �̂�, �̂�, or �̂� depending on the polarization of the incident radiation, 𝜓𝑓 is the 

final state of the molecule after absorption and 𝜓𝑖 is the initial state. In the case of 

vibrational spectroscopy, a bond vibration can be assumed to be 1D (along x), and the 

wavefunctions are harmonic oscillator wavefunctions represented by |𝑛⟩, 𝑛 = 0,1,2…, 

where 𝑛 is an integer that corresponds to the ground (𝑛 = 0) or excited states (𝑛 > 0).  

For this question, create a matrix representation of −𝑒 ∙ �̂� = −𝑒 ∙ �̂� in the |𝑛⟩ basis for 

𝑛 = 0,1,2,3 (otherwise the matrix will be infinite) to: 

a) Determine a selection rule for vibrational transitions.  

b) Please explain an observation I 

made as a graduate student (Snee et 

al., J. Am. Chem. Soc. 2002, 124, 35, 

10605–10612, data shown here). In 

this time resolved UV-pump IR-probe 

study, after UV excitation of 

CpRh(CO)3 and photo-ejection of a 

CO ligand in a heptane solvent a 

vibrational “hot band” of the CO 

stretch of the CpRh(CO)2 product was 

observed in the time resolved IR 

spectra. These “hot bands” correspond to CO’s |3⟩ ← |2⟩ transition at 2020 cm-1 and 

|2⟩ ← |1⟩ at 2030 cm-1, while the ground state |1⟩ ← |0⟩ transition appears as a “parent 

bleach” signal at 2045 cm-1. The red-shift in energy is due to the anharmonicity of the 

CO ligand (not important to this question). These transitions were due to vibrational 

excitation of the product with leftover energy from the UV pump, and they disappear 

after ~200 ps due to vibrational relaxation.  

Here is the question- the intensities of these hot band absorptions were very strong, 

much more than I expected! Does the matrix representation of |〈−𝑒 ∙ �̂�〉|2 help explain 

this observation? 
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2. Finite Difference Method. Let’s say we wanted to develop a 5-point stencil for the 

Finite Difference method: 

𝑓(𝑥)′ = 𝑎 ∙ 𝑓(𝑥 − 2ℎ) + 𝑏 ∙ 𝑓(𝑥 − ℎ) + 𝑐 ∙ 𝑓(𝑥) + 𝑑 ∙ 𝑓(𝑥 + ℎ) + 𝑒 ∙ 𝑓(𝑥 + 2ℎ) 

and  

𝑓(𝑥)′′ = 𝑎 ∙ 𝑓(𝑥 − 2ℎ) + 𝑏 ∙ 𝑓(𝑥 − ℎ) + 𝑐 ∙ 𝑓(𝑥) + 𝑑 ∙ 𝑓(𝑥 + ℎ) + 𝑒 ∙ 𝑓(𝑥 + 2ℎ) 

Please determine the coefficients a,b,c,d and e for 𝑓(𝑥)′ and 𝑓(𝑥)′′. Hint: use Matlab 

and note that in the 3-point stencil example there are three equations for solving the 

three unknowns. How will you generate 5 equations to solve for 5 unknowns? 

3. Finite Difference Method: Core/shell quantum dots such as CdSe/CdS have a 

CdSe core, a CdS shell, and then organic ligands on the surface. Please plot the first 

three eigenstates of an electron in a 3 nm core CdSe quantum dot with a 2 nm thick 

CdS shell using a 3-point stencil. Also show the ground and next 9 excited state 

energies in units of eV. 

a) Please send your energies, first three wavefunctions and code so I can see if you 

modeled the QD correctly. Note that you may or may not need to “flip” up a 

wavefunction. 

b) Does the inclusion of a shell increase or decrease the ground state energy of the 

electron? (hint: need to solve the energy for the “core only” problem, for which you could 

simply set the shell potential energy to the organic ligand potential energy of 3 eV). 

c) Why do you think there is 

a kink in the energy diagram 

starting at the 7th state? 

When you attempt to 

answer this question, you 

need these data: 

Mass of an electron in CdSe: 

0.13 me 

Mass of an electron in CdS: 

0.21 me 

You have to model the 

electron’s potential energy 

increasing from the CdSe 

core to the shell (you can 

assume V(r)=0 for the CdSe 

core). Here is a band offset 

diagram I pulled off Google:  



Last, you can assume that outside the CdS shell the electron experiences a +3.0 eV 

barrier.  

Note, the way that electronic structure works using the “effective mass approximation” is 

to assume that excitation of a semiconductor results in an electron in the conduction 

band, and a fictitious particle called a “hole” in the valence band. The hole is basically a 

negative electron, its job is to represent the absence of the electron in the valence. This 

theory works quite well so long as you scale the masses of the electron and valence to 

match experimentally derived data. Last hint- when you add an inorganic shell to the 

core, the emission is red-shifted (i.e. lower in energy).  

 

4. Split Operator. For this problem please create a potential energy surface and 

calculate the ground and excited state wavefunctions.  

An example code is provided that does the harmonic oscillator problem; you have to 

modify it to change the potential surface. I suggest one of the following: 

 

For this question: 

a) Please provide a spectrum of the energies and calculate the energies of the ground 

and 1st excited state. 

b) Please provide the calculated ground and 1st excited state wavefunctions. 

Hint: You have to be careful where you start the wavefunction on the PES. If you have 

a very bad starting wavefunction on an unrealistic PES the calculation will go haywire. 

Also, your answers will have both real and imaginary 

components; it’s basically impossible to avoid this so show 

both (or you can show the absolute value). In that regard, 

no matter what your PES the ground and excited states 

should look something like this diagram, in that generally a 

ground state has no nodes yet the 1st excited state has 

one. 

 

5. Visualizing Wavefunctions with the Split Operator Method. Let’s make a video! 

Not of the kitties, but of a wavefunction on the potential energy surface that you used in 

question 4. Use the split operator method to visualize a wavefunction over time and 

integrate the following code to make a video of the motion. You should do the following: 

a) Make a video using the ground state eigenfunction as the starting wavefunction. 



b) Displace that wavefunction and rerun the dynamics. What is different in this case? 

Can you relate what you see to some of our lessons about the time evolution of 

Hamiltonian eigenstates? 

I have included a short script in the example to help you along. Please send me the 

video. 

6. Angular Momentum Addition: Consider a carbon atom with 2 unpaired p-electrons. 

We showed in class that the term symbols are 1D2 (five states), 3P2 (five of states), 3P1 

(three states), 3P0 (one state) and 1S0 (one state), for a total of 15. Problem- when I look 

at the electron configurations, I see 6 states with ms=±1; these are clearly triplet states: 

 

Likewise, the three configurations that are doubly occupied must be singlets: 

 

Since I should have 9 triplet states and 6 singlets, we seem to be missing three of each! 

They all must be somewhere in these 6 states, but they all seem to be singlets because 

ms=0 for each of them: 



 

Here is the actual question- According to the Clebsch-Gordan table, the 3P0 state 

should be: 

 

and the 1D2 state should be: 

 

The problem with the |0,0⟩ is that there are two of them in the 6 basis states identified 

above: 

 

Normally I would think that one is triplet (belongs to 3P0) and the other is singlet 

(belongs to 1D2), but they are basically the same except for the electrons being flipped 

over! It doesn’t seem possible to distinguish one of them as triplet and the other singlet! 

Please resolve the problem and write out the correct wavefunctions for the states in 

terms of the basis functions. Hint: the answer is stupid-simple. 

7. Term Symbol: A nitrogen atom has three unpaired 2p electrons.  

a) What are the possible term symbols? Please start with the provided table of electron 

configurations and then determine the patterns inside of them to know what the terms 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwjA-r_Bqa3tAhWrVTABHeWkCf8QFjAOegQIAhAC&url=http%3A%2F%2Fpdg.lbl.gov%2F2002%2Fclebrpp.pdf&usg=AOvVaw08lzSEhkPIt8JH89NckQkD


are. Hint: I’m sure you can already look up that the ground state is 4S3/2, too bad there 

are two other terms! 

b) Can you use the Clebsch-Gordan table to identify which single basis state gives rise 

to the 2D5/2 state? Specifically I am looking for the J=5/2, MJ=+5/2, because there are 

technically 6 different J=5/2 states (MJ=5/2, 3/2, 1/2, -1/2, -3/2, -5/2). Hint: This question 

is easy because it is just one of the basis states, whereas the others are linear 

combinations. 

 

Appendix: Example MATLAB codes 

Finite Difference Method. Calculation of the 3-point stencil constants for a 1st 

derivative: 

syms a b c;  

eqn1 = a + b + c == 0; 

eqn2 = -h*a + h*c == 1; 

eqn3 = 1/2*h^2*a + 1/2*h^2*c == 0; 

[A,B] = equationsToMatrix([eqn1, eqn2, eqn3], [a, b, c]); 

der = linsolve(A,B) 

  

der = 

  -1/(2*h) 

        0 

  1/(2*h)  

 

  



Finite Difference Method. Example code for a 0.5 me particle in a 3 nm sphere using a 

3-point stencil: 
clear all; close all; 
lengsim=1000; %Wavefunction has 1000 grid points 
delr=0.2;     %grid spacing 
delrsq=delr*delr;  
radius=56.7;  %This is in Bohrs, corresponds to 3 nm. 
hbar=1;       %atomic units afterall 
me=0.5;       %the particle has half and electron's mass 
constants=-hbar/2/me; %p^2 operator's constants 

  
for j=1:lengsim      %This is here to initialize the sim 
    r(j)=j*delr;     %Defines the grid 
    VR(j)=0;         %the potential energy 
    if (r(j)>radius) %if the particel is >3 nm, the potential is high! 
        VR(j)=100;     %100 Hartree is an extremely high energy. 
    end; 
end; 
%The 1st line of the Finite Diff matrix 
H(1,1)=constants*(-2/delrsq)+VR(1);           

H(1,2)=constants*(1/delrsq+2/r(1)*1/2/delr);   

  
for j=2:lengsim 
    H(j,j)=constants*(-2/delrsq)+VR(j);  
    H(j,j+1)=constants*(1/delrsq+2/r(j)*1/2/delr);   
    H(j,j-1)=constants*(1/delrsq-2/r(j)*1/2/delr); 
end;  

  
[Psi,D]=eigs(sparse(H(1:lengsim,1:lengsim)),10,0);  

%Matlab's calculation of eigenvalues etc. 

  
for i=1:10 
    energies(i)=D(i,i);  
end; 
plot(r*0.0529,-Psi(:,1)/sqrt(sum(Psi(:,1).*Psi(:,1).*r'.*r'))); 
hold on; 
plot(r*0.0529,-Psi(:,2)/sqrt(sum(Psi(:,2).*Psi(:,2).*r'.*r'))); 
plot(r*0.0529,-Psi(:,3)/sqrt(sum(Psi(:,3).*Psi(:,3).*r'.*r'))); 
title('First three normalized s-state wavefunctions') 
figure; 
plot(energies(1:10),'bo'); title('Energies') 

 
Split Operator. Example code for an excited CO molecule a harmonic potential. This 
code also creates a video of the process: 
clear all; 
vido = VideoWriter('chem542.avi'); % Matlab specific commands 
open(vido);             % Matlab specific video writer 
dx=0.005;               % Grid spacing, in units of Bohr 
mass=1.138e-27;         % Reduced mass of CO in kg 
mass=mass/9.109e-31     % Now in units of electron mass 
kf=1860;                %Spring constant, in N/m 
kf=kf*1.214e7*5.29e-11; % Spring constant, in Hartree/Bohr 
energy1=0.5*sqrt(kf/mass); % Energy of the ground state 
energy2=1.5*sqrt(kf/mass); % Energy of the 1st excited state 
dt=0.005;                  % Time constant, 1 unit is ~2.42e-17 sec 
L=2^12;                 % Number of grid points, ~1000 



tott=50000;             % Number of time steps 
boxlength=L*dx;         % Length of the side of a box in Bohrs 
norm=0;                 % For normalizing the wavefunction 
i=sqrt(-1); 
for x=1:L 
  eigen1(x)=0.0;                    %for calculating the ground state 
  eigen2(x)=0.0;                    %for the 1st excited state 
  x2(x)=x*dx-boxlength/2;              %center the grid 
  length=sqrt(x2(x)^2);                %distance from the center 
  wf(x)=exp(-sqrt(kf*mass)/2*(length+0.50)^2); 
  %+10*x2*exp(-sqrt(kf*mass)/2*length^2); %initialize the w.f. 
  potential(x)=0.5*kf*length^2;        %harmonic oscillator potential 
  V(x)=exp(-sqrt(-1)*dt*potential(x)); %V operator 
  norm=norm+wf(x)*conj(wf(x)); %for normalizing the w.f. 
  mx3=x;                            %Part of momentum operator 
  if(x>L/2) 
    mx3=L-x;                        %Part of the momentum operator 
  end; 
  mx2=mx3*2.0*pi/boxlength;         %Part of the momentum operator 
  K(x)=exp(-i*dt/4.0/mass*mx2*mx2); %The momentum operator 
end; 
wf=wf/sqrt(norm);                   %Norm the wavefunction 
wf_initial=wf;                      %Save the wf for furhter calculations 
plot(x2,abs(wf));                      %1st frame of the movie! 
hold on; 
plot(x2,potential/2,'r'); 
axis([-1 1 -.01 0.35]); 
frame = getframe(gcf); 
writeVideo(vido,frame); 
clf(figure(1)); 
wf=fft(wf);                         %Fourier Transform for K operator 
for t=1:tott 
    wf=K.*wf; 
    wf=ifft(wf); 
    wf=V.*wf; 
    cor(t)=real(sum(sum(sum(wf_initial.*wf))))+i*imag(sum(sum(sum(wf_initial.*wf)))); 
    eigen1=eigen1+exp(sqrt(-1)*energy1*t*dt).*wf; 
    eigen2=eigen2+exp(sqrt(-1)*energy2*t*dt).*wf; 
    if (mod(t,25)==0)               %Don't video image every frame 
      plot(x2,abs(wf)); 
      hold on; 
      plot(x2,potential/2,'r'); 
      axis([-1 1 -0.01 0.35]); 
      frame = getframe(gcf); 
      writeVideo(vido,frame); 
      clf(figure(1)); 
    end; 
    wf=fft(wf); 
    wf=K.*wf; 
end; 

  
close(vido); 

 

  



Here are the potential configurations of a nitrogen atom for question 6a: 

 


