
Chem 542 Problem Set 8 

1. Let’s look back at question 1c from problem set 6, where you proved:  

∑ 𝜓𝑛
∗ (𝑥′)𝜓𝑛(𝑥′′)

∞

𝑛=1

= 𝛿(𝑥′′ − 𝑥′) 

What does this really mean? To figure this out, let’s use a MATLAB script to evaluate 

the summation using particle in a box wavefunctions: 

𝜓𝑛
∗(𝑥) = 𝜓𝑛(𝑥) = √

2

𝐿
∙ 𝑐𝑜𝑠 (

𝑛𝜋𝑥

𝐿
) 

where n is the order of the eigenfunction (n=1 for the ground state, etc.). For this 

problem, please graph the sum as a function of the upper limit of n from 1→105 states. 

You will need to show two sets of data, one for a sum where 𝑥′ = 𝑥′′ and another for 

𝑥′ ≠ 𝑥′′. For example, in the answer key I used: L=2 nm, 𝑥′ = 𝑥′′ = 1 nm for one set of 

conditions which was compared to a sum using: L=2 nm, 𝑥′ = 1 nm, 𝑥′′ = 1.01 nm. As 

usual, please send your code along with a graph. 

Answer: Here is my MATLAB script and graph. Overall the result seems valid: 

sumtot1=0; 

sumtot2=0; 

for n=1:10000  

    sumtot1=sumtot1+sqrt(2/2)*cos(n*pi*1.0/2)*cos(n*pi*1.0/2);  

    result(n)=sumtot1; 

    sumtot2=sumtot2+sqrt(2/2)*cos(n*pi*1/2)*cos(n*pi*1.01/2);  

    result2(n)=sumtot2; 

end; 

plot(result,'b'); hold on; plot(result2,'r'); 

 

  



2. The formula for a Gaussian wavepacket in the real space representation is: 

⟨𝑥|𝜓⟩ =
1

√𝑑√𝜋
𝑒

(𝑖𝑘𝑥−
𝑥2

2𝑑2)
 

For this problem, please:  

a. Transform the above into the momentum representation, i.e. ⟨𝑝|𝜓⟩, using 

Mathematica, and,  

b. Check that the result is normalized, and, 

c. Then use it to calculate 〈�̂�2〉. Hint: In the momentum frame, �̂� is not �̂� =
ℏ

𝑖

𝜕

𝜕𝑥
! What do 

you think the operator is? Double hint: its way easier than you think! 

d. Based on the result from pt. c, please comment on how does greater localization of 

the real space wavefunction (smaller 𝑑) affect the kinetic energy. 

Answer: You need to use Mathematica: 

 

 

Unfortunately this requires some simplification; Mathematica isn’t perfect: 

⟨𝑝|𝜓⟩ =
√𝑑

√ℏ√𝜋
𝑒

−
𝑑2

2ℏ2(𝑝−ℏ𝑘)2

 

b. This can be done in a straightforward manner with Mathematica: 

In[ ]:= f x 1 Pi^ 1 4 Sqrt d Exp k x x x 2 d d

Out[ ]=

k x
x2

2 d2

d 1 4

In[ ]:= Integrate 1 Sqrt 2 Pi hbar Exp p x hbar f x ,

x, Infinity, Infinity , Assumptions hbar 0, d 0, k 0

Out[ ]=
d

d2 hbar k p 2

2 hbar2

d hbar 1 4



 

c. Now the trick here is to note that the momentum operator in p space is: 

Thus you are trying to solve: 

〈�̂�2〉 = ∫ ⟨𝜓|𝑝⟩𝑝2⟨𝑝|𝜓⟩𝜕𝑝

∞

−∞

 

Again using Mathematica: 

 

Thus 〈�̂�2〉 =
1

2
ℏ2 (

1

𝑑2 + 2𝑘2) 

d. Now here we see that greater localization results in greater kinetic energy due to the 
1

𝑑2 term in the result from part c. 

 

3. A Poisson Bracket {𝐹, 𝐺} is defined in classical mechanics as: 

{𝐹, 𝐺} =
𝜕𝐹

𝜕𝑞

𝜕𝐺

𝜕𝑝
−

𝜕𝐹

𝜕𝑝

𝜕𝐺

𝜕𝑞
 

where 𝑞 are coordinates (i.e. 𝑞 = 𝑥, 𝑦, 𝑧) and 𝑝 is momentum. Let’s do some derivations. 

a. For a function of coordinates and momenta 𝐹(𝑞, 𝑝), where are functions of time, i.e. 

𝑞(𝑡) and 𝑝(𝑡), please express: 
𝜕𝐹(𝑞(𝑡),𝑝(𝑡))

𝜕𝑡
 of in terms of 

𝜕𝑝

𝜕𝑡
 and 

𝜕𝑞

𝜕𝑡
. Hint: Use the chain 

rule! 

In[ ]:= f2 p Integrate 1 Sqrt 2 Pi hbar Exp p x hbar f x ,

x, Infinity, Infinity , Assumptions hbar 0, d 0, k 0

Out[ ]=
d

d2 hbar k p 2

2 hbar2

d hbar 1 4

In[ ]:= Integrate Conjugate f2 p f2 p , p, Infinity, Infinity ,

Assumptions hbar 0, k 0, d 0

Out[ ]= 1

In[ ]:= Integrate Conjugate f2 p p p f2 p , p, Infinity, Infinity ,

Assumptions hbar 0, k 0, d 0

Out[ ]=
1

2
hbar2

1

d2
2 k2



b. Now insert the classical relations: 
𝜕𝑞

𝜕𝑡
=

𝜕𝐻

𝜕𝑝
 and: 

𝜕𝑝

𝜕𝑡
= −

𝜕𝐻

𝜕𝑞
 where H is the Hamiltonian 

and express the final result as a Poisson bracket. 

c. Now let’s apply the Poisson bracket to calculate the motion of a spring, for which 

𝑉(𝑞) =
1

2
𝑘𝑓 ∙ 𝑞(𝑡)2 (note: it is traditional to use “x” as the coordinate for the spring 

problem, but to be consistent we will just use q in place of x). The Hamiltonian of such a 

system is: 

𝐻 =
𝑝(𝑡)2

2𝑚
+

1

2
𝑘𝑓 ∙ 𝑞(𝑡)2 

Can you show that you can solve the Poisson brackets:  

𝜕𝑞(𝑡)

𝜕𝑡
= {𝑞(𝑡), 𝐻} and 

𝜕𝑝(𝑡)

𝜕𝑡
= {𝑝(𝑡), 𝐻} 

to show that 
𝜕𝑞(𝑡)

𝜕𝑡
=

𝑝(𝑡)

𝑚
 and 

𝜕𝑝(𝑡)

𝜕𝑡
= −𝑘𝑓𝑞(𝑡)? Hint: 

𝜕𝑞

𝜕𝑞
=

𝜕𝑝

𝜕𝑝
= 1 and 

𝜕𝑞

𝜕𝑝
=

𝜕𝑝

𝜕𝑞
= 0. 

d. The above relationship appears to be unsolvable for 𝑞(𝑡) since it is related to 𝑝(𝑡), 

which itself is related back to 𝑞(𝑡)! This can be resolved, however, by taking the double 

derivative of the coordinate: 
𝜕𝑞(𝑡)2

𝜕𝑡2  and then using the mechanics of 2nd order differential 

equations to solve for 𝑞(𝑡).  

Hint: Let’s use an online ODE (ordinary differential equation) solver for this one, such 

as Symbolab’s. It accepts inputs such as: 𝑞′′ = −𝑐 ∙ 𝑞 and then solves for 𝑞(𝑡).  

e. It turns out that you need to know that, at t=0 the mass was at q=0. Can you now 

solve for 𝑞(𝑡) without any un-defined constants from the ODE solver? 

Answer. a. 
𝜕𝐹(𝑞(𝑡),𝑝(𝑡))

𝜕𝑡
=

𝜕𝐹

𝜕𝑞

𝜕𝑞

𝜕𝑡
+

𝜕𝐹

𝜕𝑝

𝜕𝑝

𝜕𝑡
.  

b. 
𝜕𝐹(𝑞(𝑡),𝑝(𝑡))

𝜕𝑡
=

𝜕𝐹

𝜕𝑞

𝜕𝐻

𝜕𝑝
−

𝜕𝐹

𝜕𝑝

𝜕𝐻

𝜕𝑞
= {𝐹, 𝐻} 

c.  Using the definition of the Poisson bracket: 
𝜕𝑞(𝑡)

𝜕𝑡
= {𝑞, 𝐻} =

𝜕𝑞

𝜕𝑞

𝜕𝐻

𝜕𝑝
−

𝜕𝑞

𝜕𝑝

𝜕𝐻

𝜕𝑞
=

𝜕𝐻

𝜕𝑝
=

𝜕

𝜕𝑝
{

𝑝2

2𝑚
+

1

2
𝑘𝑓𝑞2} =

𝑝

𝑚
 

since 
𝜕𝑞

𝜕𝑝
= 0 and likewise: 

𝜕𝑝(𝑡)

𝜕𝑡
= {𝑝, 𝐻} =

𝜕𝑝

𝜕𝑞

𝜕𝐻

𝜕𝑝
−

𝜕𝑝

𝜕𝑝

𝜕𝐻

𝜕𝑞
= −

𝜕𝐻

𝜕𝑞
= −

𝜕

𝜕𝑞
{

𝑝2

2𝑚
+

1

2
𝑘𝑓𝑞2} = −𝑘𝑓𝑞 

d. 
𝜕𝑞(𝑡)2

𝜕𝑡2 =
𝜕

𝜕𝑡

𝜕𝑞(𝑡)

𝜕𝑡
=

𝜕

𝜕𝑡

𝑝(𝑡)

𝑚
=

1

𝑚

𝜕𝑝(𝑡)

𝜕𝑡
=

−𝑘𝑓

𝑚
𝑞(𝑡).  

https://www.symbolab.com/solver/ordinary-differential-equation-calculator/q''%3D-c%5Ccdot%20q?or=input


Here, we can apply standard differential equation theory to solve using the Symbolab 

site. I used an input of: 𝑞′′ = −𝑐 ∙ 𝑞 to get an output of:  

𝑞(𝑡) = 𝑐1 ∙ 𝑐𝑜𝑠(√𝑐 ∙ 𝑡) + 𝑐2 ∙ 𝑠𝑖𝑛(√𝑐 ∙ 𝑡) 

Inserting our problem specific information (𝑐 =
𝑘𝑓

𝑚
) yields: 

𝑞(𝑡) = 𝑐1 ∙ 𝑐𝑜𝑠 (√
𝑘𝑓

𝑚
∙ 𝑡) + 𝑐2 ∙ 𝑠𝑖𝑛 (√

𝑘𝑓

𝑚
∙ 𝑡) 

e. Last, since we know that at 𝑞(𝑡 = 0) = 0, we can solve for the above as: 

0 = 𝑐1 ∙ 𝑐𝑜𝑠(0) + 𝑐2 ∙ 𝑠𝑖𝑛(0) 

which makes 𝑐1 = 0 and 𝑐2 = 1; thus  

𝑞(𝑡) = 𝑠𝑖𝑛 (√
𝑘𝑓

𝑚
∙ 𝑡) 

4. a. For the ground state particle in a box wavefunction: 𝜓(𝑥) = √
2

𝐿
∙ 𝑐𝑜𝑠 (

𝜋𝑥

𝐿
), what is 

the expectation value 〈�̂�〉? I actually wouldn’t care if you just remembered the answer 

and wrote it down. 

b. For the time-dependent particle in a box wavefunction: 

𝜓(𝑥, 𝑡) = 𝑒−𝑖�̂�𝑡 ℏ⁄  𝜓(𝑥) = 𝑒
−𝑖

ℏ𝜋2

2𝑚𝐿2√
2

𝐿
∙ 𝑐𝑜𝑠 (

𝜋𝑥

𝐿
) 

please calculate 〈�̂�(𝑡)〉 = 〈𝜓(𝑥, 𝑡)|�̂�|𝜓(𝑥, 𝑡)〉 without using Mathematica.  

Hint: this question is actually stupid-simple and barely needs any derivation. This is 

because, once you start working on the answer, you will find that you will get the same 

answer as part a. Please prove why that is the case. 

c. Based on your result for pt. b., what do you expect will happen for any expectation 

value 〈Ω̂(𝑡)〉 when applied to the time-evolving eigenstate of the Hamiltonian? 

Answer: a. I don’t mind if you just wrote L/2. However, if you set it up you will find: 

〈�̂�〉 = ∫ 𝜓(𝑥)∗ ∙ 𝑥 ∙ 𝜓(𝑥) ∙ 𝜕𝑥

𝐿

0

= ∫
2

𝐿
𝑐𝑜𝑠2 (

𝜋𝑥

𝐿
) ∙ 𝜕𝑥

𝐿

0

=
𝐿

2
 

which is best done with Mathematica: 



 

b. You don’t need Mathematica to realize that the time dependence gets canceled out, 

yielding the same result as for the time-independent equation: 

〈�̂�(𝑡)〉 = ∫ 𝜓(𝑥, 𝑡)∗ ∙ 𝑥 ∙ 𝜓(𝑥, 𝑡) ∙ 𝜕𝑥

∞

−∞

 

You should already be able to see that you will cancel out the time dependent function 

due to the complex conjugate: 

𝜓(𝑥, 𝑡)∗ ∙ 𝑥 ∙ 𝜓(𝑥, 𝑡) = 𝑒
𝑖

ℏ𝜋2

2𝑚𝐿2√
2

𝐿
∙ 𝑐𝑜𝑠 (

𝜋𝑥

𝐿
) ∙ 𝑥 ∙ 𝑒

−𝑖
ℏ𝜋2

2𝑚𝐿2√
2

𝐿
∙ 𝑐𝑜𝑠 (

𝜋𝑥

𝐿
) =

2

𝐿
𝑐𝑜𝑠2 (

𝜋𝑥

𝐿
) 

Integration of this will still yield L/2. 

c. The expectation values never change with time when applied to the eigenstate of a 

Hamiltonian. 

  

In[ ]:= Integrate 2 L x Cos Pi x L ^2, x, 0, L , Assumptions L 0

Out[ ]=
L

2



Mathematica Examples 

Proof that for the Gaussian wavepacket:  

⟨𝑥|𝜓⟩ =
1

√𝑑√𝜋
𝑒

(𝑖𝑘𝑥−
𝑥2

2𝑑2)
 

Satisfies the minimum uncertainty principle: 

〈(∆�̂�)2〉〈(∆�̂�)2〉 =
1

4
ℏ2 

Define the function: 

 

Double check normalization: 

 

Calculate 〈(∆�̂�)2〉 = 〈�̂�2〉 − 〈�̂�〉2: 

〈�̂�〉: 

 

〈�̂�2〉: 

 

Hence 〈(∆�̂�)2〉 = 〈�̂�2〉 − 〈�̂�〉2 =
𝑑2

2
 

 

Calculate 〈(∆�̂�)2〉 = 〈�̂�2〉 − 〈�̂�〉2: 

〈�̂�〉: 

In[ ]:= f x 1 Pi^ 1 4 Sqrt d Exp k x x x 2 d d

Out[ ]=

k x
x2

2 d2

d 1 4

In[ ]:= Integrate Conjugate f x f x , x, Infinity, Infinity ,

Assumptions hbar 0, k 0, d 0

Out[ ]= 1

In[ ]:= Integrate Conjugate f x x f x , x, Infinity, Infinity ,

Assumptions hbar 0, k 0, d 0

Out[ ]= 0

In[ ]:= Integrate Conjugate f x x x f x , x, Infinity, Infinity ,

Assumptions hbar 0, k 0, d 0

Out[ ]=
d2

2



 

〈�̂�2〉: 

 

Hence 〈(∆�̂�)2〉 = 〈�̂�2〉 − 〈�̂�〉2 =
1

2

ℏ2

𝑑2 + ℏ2𝑘2 − ℏ2𝑘2 =
1

2

ℏ2

𝑑2 

As a result:  

〈(∆�̂�)2〉〈(∆�̂�)2〉 =
𝑑2

2
∙

1

2

ℏ2

𝑑2
=

1

4
ℏ2 

In[ ]:= Integrate hbar Conjugate f x D f x , x ,

x, Infinity, Infinity , Assumptions hbar 0, k 0, d 0

Out[ ]= hbar k

In[ ]:= Integrate hbar hbar Conjugate f x D D f x , x , x ,

x, Infinity, Infinity , Assumptions hbar 0, k 0, d 0

Out[ ]=
1

2
hbar2

1

d2
2 k2


