Chem 542 Problem Set 7

1. Can you show that:

$$
i \hbar \int \psi^{*}\left(x^{\prime}\right) \cdot \psi\left(x^{\prime}\right) \cdot \partial x^{\prime}=i \hbar
$$

using Dirac notation? You can assume that $\langle\psi \mid \psi\rangle=1$. Hint: You can reverse engineer this problem quite easily.

Answer: You should recognize you are observing a resolution of the identity:

$$
\int \psi^{*}\left(x^{\prime}\right) \cdot \psi\left(x^{\prime}\right) \cdot \partial x^{\prime}=\int\left\langle\psi \mid x^{\prime}\right\rangle\left\langle x^{\prime} \mid \psi\right\rangle \cdot \partial x^{\prime}
$$

Now you can remove $\int\left|x^{\prime}\right\rangle\left\langle x^{\prime}\right| \cdot \partial x^{\prime}=1$ leaving $\langle\psi \mid \psi\rangle=1$. Hence, the constants remain.
2. Can you show that $\langle\psi|[\hat{x}, \hat{p}]|\psi\rangle=i \hbar$? Please use Dirac notation to solve this problem, which requires double resolutions of the identity (in x^{\prime} and $x^{\prime \prime}$). I suggest you use the resolutions to "bracket" the \hat{p} operator with x^{\prime} and $x^{\prime \prime}$ so that you can use the following:

$$
\left\langle x^{\prime}\right| p\left|x^{\prime \prime}\right\rangle=\left\{-i \hbar \frac{\partial}{\partial x^{\prime}}\right\} \delta\left(x^{\prime}-x^{\prime \prime}\right)
$$

Hint: We assume the state ψ is normalized, i.e.: $\langle\psi \mid \psi\rangle=1$.
Answer: $\langle\psi|[\hat{x}, \hat{p}]|\psi\rangle=\langle\psi| \hat{x} \cdot \hat{p}|\psi\rangle-\langle\psi| \hat{p} \cdot \hat{x}|\psi\rangle$. Next we doubly resolve identities:

$$
\begin{gathered}
\langle\psi|[\hat{x}, \hat{p}]|\psi\rangle=\iint\langle\psi| \hat{x}\left|x^{\prime}\right\rangle\left\langle x^{\prime}\right| \hat{p}\left|x^{\prime \prime}\right\rangle\left\langle x^{\prime \prime} \mid \psi\right\rangle \cdot \partial x^{\prime} \partial x^{\prime \prime} \\
-\iint\left\langle\psi \mid x^{\prime}\right\rangle\left\langle x^{\prime}\right| \hat{p}\left|x^{\prime \prime}\right\rangle\left\langle x^{\prime \prime}\right| \hat{x}|\psi\rangle \cdot \partial x^{\prime} \partial x^{\prime \prime} \\
=\iint x^{\prime}\left\langle\psi \mid x^{\prime}\right\rangle\left\langle x^{\prime}\right| \hat{p}\left|x^{\prime \prime}\right\rangle\left\langle x^{\prime \prime} \mid \psi\right\rangle \cdot \partial x^{\prime} \partial x^{\prime \prime}-\iint\left\langle\psi \mid x^{\prime}\right\rangle\left\langle x^{\prime}\right| \hat{p}\left|x^{\prime \prime}\right\rangle x^{\prime \prime}\left\langle x^{\prime \prime} \mid \psi\right\rangle \cdot \partial x^{\prime} \partial x^{\prime \prime}
\end{gathered}
$$

Let's do the first one first:

$$
\iint x^{\prime} \cdot \psi^{*}\left(x^{\prime}\right) \cdot\left\{-i \hbar \frac{\partial}{\partial x^{\prime}}\right\} \delta\left(x^{\prime}-x^{\prime \prime}\right) \cdot \psi\left(x^{\prime \prime}\right) \cdot \partial x^{\prime} \partial x^{\prime \prime}=-i \hbar \int x^{\prime} \cdot \psi^{*}\left(x^{\prime}\right) \cdot \frac{\partial \psi\left(x^{\prime}\right)}{\partial x^{\prime}} \cdot \partial x^{\prime}
$$

Likewise the other one is:

$$
\iint\left\langle\psi \mid x^{\prime}\right\rangle\left\langle x^{\prime}\right| \hat{p}\left|x^{\prime \prime}\right\rangle x^{\prime \prime}\left\langle x^{\prime \prime} \mid \psi\right\rangle \cdot \partial x^{\prime} \partial x^{\prime \prime}=
$$

$$
\begin{aligned}
\iint \psi^{*}\left(x^{\prime}\right) \cdot\{ & \left.-i \hbar \frac{\partial}{\partial x^{\prime}}\right\} \delta\left(x^{\prime}-x^{\prime \prime}\right) \cdot x^{\prime \prime} \cdot \psi\left(x^{\prime \prime}\right) \cdot \partial x^{\prime} \partial x^{\prime \prime} \\
& =-i \hbar \int \psi^{*}\left(x^{\prime}\right) \cdot \frac{\partial}{\partial x^{\prime}} \cdot\left\{x^{\prime} \cdot \psi\left(x^{\prime}\right)\right\} \cdot \partial x^{\prime}
\end{aligned}
$$

You have to use the product rule on the above:

$$
\begin{aligned}
-i \hbar \int \psi^{*}\left(x^{\prime}\right) & \cdot \frac{\partial}{\partial x^{\prime}} \cdot\left\{x^{\prime} \cdot \psi\left(x^{\prime}\right)\right\} \cdot \partial x^{\prime} \\
& =-i \hbar \int \psi^{*}\left(x^{\prime}\right) \cdot \psi\left(x^{\prime}\right) \cdot \partial x^{\prime}-i \hbar \int x^{\prime} \cdot \psi^{*}\left(x^{\prime}\right) \cdot \frac{\partial \psi\left(x^{\prime}\right)}{\partial x^{\prime}} \cdot \partial x^{\prime}
\end{aligned}
$$

Now when you put it all together:

$$
\begin{aligned}
-i \hbar \int x^{\prime} \cdot \psi^{*} & \left(x^{\prime}\right) \cdot \frac{\partial \psi\left(x^{\prime}\right)}{\partial x^{\prime}} \cdot \partial x^{\prime} \\
& -\left\{-i \hbar \int \psi^{*}\left(x^{\prime}\right) \cdot \psi\left(x^{\prime}\right) \cdot \partial x^{\prime}-i \hbar \int x^{\prime} \cdot \psi^{*}\left(x^{\prime}\right) \cdot \frac{\partial \psi\left(x^{\prime}\right)}{\partial x^{\prime}} \cdot \partial x^{\prime}\right\} \\
& =i \hbar \int \psi^{*}\left(x^{\prime}\right) \cdot \psi\left(x^{\prime}\right) \cdot \partial x^{\prime}=i \hbar
\end{aligned}
$$

due to the fact that: $\int \psi^{*}\left(x^{\prime}\right) \cdot \psi\left(x^{\prime}\right) \cdot \partial x^{\prime}=1$.
3. Suppose \hat{A} and \hat{B} are two Hermitian operators. a) If:

$$
\Delta \hat{A}|\psi\rangle=\lambda \cdot \Delta \widehat{B}|\psi\rangle
$$

where λ is purely imaginary, can you show that the uncertainty principle yields the lowest possible result:

$$
\left.\langle\psi|(\Delta \hat{A})^{2}|\psi\rangle\langle\psi|(\Delta \hat{B})^{2}|\psi\rangle=\frac{1}{4}|\langle\psi|[\hat{B}, \hat{A}]| \psi\right\rangle\left.\right|^{2}
$$

Hint: First show that $\left.\langle\psi|(\Delta \hat{A})^{2}|\psi\rangle\langle\psi|(\Delta \hat{B})^{2}|\psi\rangle=|\langle\psi| \Delta \hat{B} \Delta A| \psi\right\rangle\left.\right|^{2}$. Next:

$$
\langle\psi| \Delta \hat{B} \Delta \hat{A}|\psi\rangle=\frac{1}{2}\langle\psi|[\Delta \hat{B}, \Delta \hat{A}]|\psi\rangle+\frac{1}{2}\langle\psi|\{\Delta \widehat{B}, \Delta \hat{A}\}|\psi\rangle
$$

where $\frac{\lambda^{*}}{\lambda}=-1$ is used to show that the second term (the anticommutator) is 0 . Also recall from class that $\langle\psi|[\Delta \hat{B}, \Delta \hat{A}]|\psi\rangle=\langle\psi|[\hat{B}, \hat{A}]|\psi\rangle$, and based on the information given in the problem:

$$
\Delta \hat{B}|\psi\rangle=\frac{1}{\lambda} \Delta \hat{A}|\psi\rangle \text { and }\langle\psi| \Delta \hat{A}=\lambda^{*}\langle\psi| \Delta \widehat{B}
$$

b) Can you also show that: $\langle\psi|(\Delta \hat{B})^{2}|\psi\rangle=\frac{1}{2 \lambda}\langle\psi|[\hat{B}, \hat{A}]|\psi\rangle$? FYI, this is how we knew that:

$$
\lambda=\frac{\langle\psi|[\hat{B}, \hat{A}]|\psi\rangle}{2\langle\psi|(\Delta \hat{B})^{2}|\psi\rangle}
$$

c) Using: $\Delta \hat{p}|\psi\rangle=\lambda \cdot \Delta \hat{x}|\psi\rangle$, show that the minimum uncertainty wavepacket satisfying: $\langle\psi|[\hat{x}, \hat{p}]|\psi\rangle=i \hbar$ is given by:

$$
\langle x \mid \psi\rangle \cong \exp \left[\frac{-(x-\langle x\rangle)^{2}}{4\left\langle(\Delta \hat{x})^{2}\right\rangle}+\frac{i \cdot x \cdot\langle p\rangle}{\hbar}\right]
$$

Hint: As above $\lambda=\frac{\langle\psi|[\hat{B}, \hat{A}]|\psi\rangle}{2\langle\psi|(\Delta \hat{B})^{2}|\psi\rangle}$ and you need to use this identity:

$$
\frac{-x^{2}}{4\langle\psi|(\Delta \hat{x})^{2}|\psi\rangle}+\frac{x \cdot\langle\hat{x}\rangle}{2\langle\psi|(\Delta \hat{x})^{2}|\psi\rangle}=\frac{-(x-\langle x\rangle)^{2}}{4\left\langle(\Delta \hat{x})^{2}\right\rangle}
$$

Aside: The wavefunction above is not fully correct because it isn't normalized. You don't need to show this, but the normalized wavefunction is:

$$
\langle x \mid \psi\rangle=\left(\frac{1}{2 \pi\left\langle(\Delta \hat{x})^{2}\right\rangle}\right)^{\frac{1}{4}} \exp \left[\frac{-(x-\langle x\rangle)^{2}}{4\left\langle(\Delta \hat{x})^{2}\right\rangle}+\frac{i \cdot x\langle p\rangle}{\hbar}\right]
$$

Answers: a) A First, we use the fact that $\Delta \hat{A}|\psi\rangle=\lambda \cdot \Delta \hat{B}|\psi\rangle$ below:

$$
\langle\psi|(\Delta \hat{A})^{2}|\psi\rangle=\langle\psi| \Delta \hat{A} \Delta \hat{A}|\psi\rangle=\langle\psi| \Delta \hat{A} \cdot \lambda \cdot \Delta \hat{B}|\psi\rangle
$$

Likewise, since $\Delta \hat{B}|\psi\rangle=\frac{1}{\lambda} \Delta \hat{A}|\psi\rangle:\langle\psi|(\Delta \hat{B})^{2}|\psi\rangle=\langle\psi| \Delta \hat{B} \Delta \hat{B}|\psi\rangle=\langle\psi| \Delta \hat{B} \cdot \frac{1}{\lambda} \cdot \Delta \hat{A}|\psi\rangle$. Thus:

$$
\begin{gathered}
\langle\psi|(\Delta \hat{A})^{2}|\psi\rangle\langle\psi|(\Delta \hat{B})^{2}|\psi\rangle=\langle\psi| \Delta \hat{A} \cdot \lambda \cdot \Delta \hat{B}|\psi\rangle\langle\psi| \Delta \hat{B} \cdot \frac{1}{\lambda} \cdot \Delta \hat{A}|\psi\rangle= \\
\left.\frac{\lambda}{\lambda}\langle\psi| \Delta \hat{A} \Delta \hat{B}|\psi\rangle\langle\psi| \Delta \hat{B} \Delta \hat{A}|\psi\rangle=\langle\psi| \Delta \hat{B} \Delta \hat{A}|\psi\rangle^{*}\langle\psi| \Delta \hat{B} \Delta \hat{A}|\psi\rangle=|\langle\psi| \Delta \hat{B} \Delta A| \psi\right\rangle\left.\right|^{2}
\end{gathered}
$$

where the fact that $\langle\psi| \Delta \hat{A} \Delta \hat{B}|\psi\rangle=\langle\psi| \Delta \widehat{B} \Delta \hat{A}|\psi\rangle^{*}$ is due to the fact that the operators are Hermitian. Next, we have already shown in class that:

$$
\langle\psi| \Delta \hat{B} \Delta \hat{A}|\psi\rangle=\frac{1}{2}\langle\psi|[\Delta \hat{B}, \Delta \hat{A}]|\psi\rangle+\frac{1}{2}\langle\psi|\{\Delta \hat{B}, \Delta \hat{A}\}|\psi\rangle
$$

where the anticommutator is: $\langle\psi|\{\Delta \hat{B}, \Delta \hat{A}\}|\psi\rangle=\langle\psi| \Delta \hat{B} \Delta \hat{A}|\psi\rangle+\langle\psi| \Delta \hat{A} \Delta \hat{B}|\psi\rangle$, and shown below is why this anticommutator is 0 . First, we insert the identities discussed in the problem: $\Delta \widehat{B}|\psi\rangle=\frac{1}{\lambda} \Delta \hat{A}|\psi\rangle$ and $\left.\langle\psi| \Delta \hat{A}=\lambda^{*}\langle\psi| \Delta \widehat{B}\right)$, into the above:

$$
\langle\psi|\{\Delta \widehat{B}, \Delta \hat{A}\}|\psi\rangle=\langle\psi| \Delta \hat{B} \Delta \hat{A}|\psi\rangle+\langle\psi| \Delta \hat{A} \Delta \hat{B}|\psi\rangle=\langle\psi| \Delta \hat{B} \Delta \hat{A}|\psi\rangle+\lambda^{*}\langle\psi| \Delta \hat{B} \cdot \frac{1}{\lambda} \cdot \Delta \hat{A}|\psi\rangle
$$

Since $\frac{\lambda^{*}}{\lambda}=-1$ when λ is imaginary, we are left with:

$$
\langle\psi|\{\Delta \widehat{B}, \Delta \hat{A}\}|\psi\rangle=\langle\psi| \Delta \hat{B} \Delta \hat{A}|\psi\rangle-\lambda^{*}\langle\psi| \Delta \hat{B} \Delta \hat{A}|\psi\rangle=0
$$

Thus, $\langle\psi| \Delta \hat{B} \Delta \hat{A}|\psi\rangle=\frac{1}{2}\langle\psi|[\Delta \hat{B}, \Delta \hat{A}]|\psi\rangle$, which we showed in class is $\langle\psi|[\Delta \hat{B}, \Delta \hat{A}]|\psi\rangle=$ $\langle\psi|[\hat{B}, \hat{A}]|\psi\rangle$ and as a result:

$$
\left.\left.\left.\langle\psi|(\Delta \hat{A})^{2}|\psi\rangle\langle\psi|(\Delta \widehat{B})^{2}|\psi\rangle=|\langle\psi| \Delta \hat{B} \Delta \hat{A}| \psi\right\rangle\left.\right|^{2}=\left|\frac{1}{2}\langle\psi|[\Delta \hat{B}, \Delta \hat{A}]\right| \psi\right\rangle\left.\right|^{2}=\frac{1}{4}|\langle\psi|[\hat{B}, \hat{A}]| \psi\right\rangle\left.\right|^{2}
$$

b) We demonstrated in pt. a that:

$$
\langle\psi| \Delta \hat{B} \Delta \hat{A}|\psi\rangle=\frac{1}{2}\langle\psi|[\Delta \widehat{B}, \Delta \hat{A}]|\psi\rangle
$$

Since $\langle\psi| \Delta \widehat{B} \Delta \hat{A}|\psi\rangle=\lambda\langle\psi| \Delta \widehat{B} \Delta \widehat{B}|\psi\rangle=\frac{1}{2}\langle\psi|[\Delta \hat{B}, \Delta \hat{A}]|\psi\rangle$, we are left with:

$$
\langle\psi| \Delta \hat{B} \Delta \hat{B}|\psi\rangle=\langle\psi|(\Delta \hat{B})^{2}|\psi\rangle=\frac{1}{2 \lambda}\langle\psi|[\Delta \hat{B}, \Delta \hat{A}]|\psi\rangle
$$

c) First start with $\Delta \hat{p}|\psi\rangle=\lambda \cdot \Delta \hat{x}|\psi\rangle$ and apply a $\langle x|$ bra to the left:

$$
\langle x| \Delta \hat{p}|\psi\rangle=\langle x| \lambda \cdot \Delta \hat{x}|\psi\rangle=\left(-i \hbar \frac{\partial}{\partial x}-\langle\hat{p}\rangle\right)\langle x \mid \psi\rangle=\lambda(\hat{x}-\langle\hat{x}\rangle)\langle x \mid \psi\rangle
$$

As a result: $-i \hbar \frac{\partial}{\partial x} \psi(x)-\langle\hat{p}\rangle \psi(x)=\lambda \cdot x \cdot \psi(x)-\langle\hat{x}\rangle \psi(x)$. We can factor this as:

$$
\frac{\partial \psi(x)}{\partial x}=\psi^{\prime}(x)=\left(\frac{i \lambda}{\hbar} \cdot x+\langle\hat{p}\rangle-\langle\hat{x}\rangle\right) \psi(x)
$$

We can divide out by to get the log derivative on the left:

$$
\int \frac{\psi^{\prime}(x)}{\psi(x)}=\ln (\psi(x))=\int \frac{i}{\hbar}(\lambda \cdot x+\langle\hat{p}\rangle-\lambda \cdot\langle\hat{x}\rangle) \partial x
$$

Thus, $\psi(x)=\exp \int \frac{i}{\hbar}(\lambda \cdot x+\langle\hat{p}\rangle-\lambda \cdot\langle\hat{x}\rangle) \partial x=\exp \left(\frac{i}{\hbar}\left(\frac{\lambda}{2} \cdot x^{2}+x \cdot\langle\hat{p}\rangle-\lambda \cdot x \cdot\langle\hat{x}\rangle\right)\right)$. Here we can use the identity
$\lambda=\frac{\langle\psi| \hat{B}, \hat{A}]|\psi\rangle}{2\langle\psi| \Delta \hat{B}^{2}|\psi\rangle}=\frac{\langle\psi| \hat{x} \hat{\hat{B}}|\psi\rangle}{2\langle\psi| \Delta \hat{x}^{2}|\psi\rangle}=\frac{i \hbar}{2\langle\psi| \Delta x^{2}|\psi\rangle}$ and as a result:

$$
\begin{aligned}
& \psi(x)=\exp (\frac{i}{\hbar} \\
&\left.\left(\frac{i \hbar \cdot x^{2}}{4\langle\psi| \Delta \hat{x}^{2}|\psi\rangle}+x \cdot\langle\hat{p}\rangle-\frac{i \hbar \cdot x \cdot\langle\hat{x}\rangle}{2\langle\psi| \Delta \hat{x}^{2}|\psi\rangle}\right)\right) \\
&=\exp \left(\frac{-x^{2}}{4\langle\psi| \Delta \hat{x}^{2}|\psi\rangle}+\frac{i}{\hbar} \cdot x \cdot\langle\hat{p}\rangle+\frac{x \cdot\langle\hat{x}\rangle}{2\langle\psi| \Delta \hat{x}^{2}|\psi\rangle}\right)
\end{aligned}
$$

Now we can use the identity $\frac{-x^{2}}{4\langle\psi| \Delta \hat{x}^{2}|\psi\rangle}+\frac{x \cdot(\hat{x}\rangle}{2\langle\psi| \Delta \hat{x}^{2}|\psi\rangle}=\frac{-(x-\langle x\rangle)^{2}}{4\left\langle\Delta \hat{x}^{2}\right\rangle}$:

$$
\psi(x)=\exp \left(\frac{-(x-\langle x\rangle)^{2}}{4\left\langle\Delta \hat{x}^{2}\right\rangle}+\frac{i}{\hbar} \cdot x \cdot\langle\hat{p}\rangle\right)
$$

If you normalize it you would find that the normalization constant is $\left(\frac{1}{2 \pi\left(\Delta \hat{x}^{2}\right\rangle}\right)^{\frac{1}{4}}$.
4. Consider a particle of mass m in a linear potential of the form $V(x)=E-F(x-a)$, where E is energy while F and a are constants. By solving the Schrodinger Equation in the momentum representation:

$$
\left\{\frac{p^{2}}{2 m}+E-F(x-a)\right\} \psi(p)=E \psi(p)
$$

show that the wavefunction $\psi(x)$ is given by:

$$
\psi(x)=C \int_{-\infty}^{\infty} \exp \left[\frac{1}{i \hbar}\left(\frac{p^{3}}{6 m F}+p(a-x)\right)\right] \partial p
$$

Hint: I was Googling how to solve the above, and I ran into this website which states:
For the $1^{\text {st }}$ order homogeneous differential equation:

$$
\frac{\partial y}{\partial t}+p(t) y=0
$$

The solution is: $\int \frac{\partial y}{y}=\int-p(t) \partial t$.
Now all you have to do is "translate" the p's, y's and t's to conform to your problem.
Answer: The idea is to use the fact that $x=i \hbar \frac{\partial}{\partial p}$ and then use the general form for a $1^{\text {st }}$ order differential equation:

$$
\frac{p^{2}}{2 m} \psi(p)+E \psi(p)-i \hbar F \frac{\partial}{\partial p} \psi(p)-F a \psi(p)=E \psi(p)
$$

Note how the cancel leaving:

$$
i \hbar F \frac{\partial \psi}{\partial p}-\left(\frac{p^{2}}{2 m}+F a\right) \psi(p)=0
$$

Therefore:

$$
\frac{\partial \psi(p)}{\psi(p)}=\frac{1}{i \hbar}\left(\frac{p^{2}}{2 m F}+a\right) \partial p
$$

Now integrate both sides: $\int \frac{\partial \psi(p)}{\psi(p)}=\ln (\psi(p))$ while the other side is: $\int \frac{1}{i \hbar}\left(\frac{p^{2}}{2 m i F}+a\right) \partial p=$ $\frac{1}{i \hbar}\left(\frac{p^{3}}{6 m F}+p a\right)$ and thus $\psi(p)=\exp \left\{\frac{1}{i \hbar}\left(\frac{p^{3}}{6 m F}+p a\right)\right\}$. Next, you transform the momentum representation into space via:

$$
\begin{gathered}
\psi(x)=\int_{-\infty}^{\infty} \exp \left(\frac{i p x}{\hbar}\right) \psi(p) \partial p=\int_{-\infty}^{\infty} \exp \left(i \frac{p x}{\hbar}\right) \exp \left\{\frac{1}{i \hbar}\left(\frac{p^{3}}{6 m F}+p a\right)\right\} \partial p= \\
\int_{-\infty}^{\infty} \exp \left\{\frac{1}{i \hbar}\left(\frac{p^{3}}{6 m F}+p a\right)-\frac{p x}{i \hbar}\right\} \partial p=\int_{-\infty}^{\infty} \exp \left\{\frac{1}{i \hbar}\left(\frac{p^{3}}{6 m F}+p(a-x)\right)\right\} \partial p
\end{gathered}
$$

5. Extra Maths Learnings! Let \hat{A} and \hat{B} be any operators and λ is a constant. Please show that:

$$
\hat{f}(\lambda)=e^{-\lambda \hat{B}} \hat{A} e^{\lambda \hat{B}}=\hat{A}+\lambda[\hat{A}, \hat{B}]+\frac{1}{2!} \lambda^{2}[[\hat{A}, \hat{B}], \hat{B}]+\cdots=\sum_{n=0}^{\infty} \frac{\lambda^{n}}{n!}[\hat{A}, \hat{B}]_{n}
$$

where $[\hat{A}, \hat{B}]_{n}$ is the n-fold commutator of \hat{A} and \hat{B}, i.e. $[\hat{A}, \hat{B}]_{n}=\left[[\hat{A}, \hat{B}]_{n-1}, \hat{B}\right]$
Hint: It is tempting to expand the exponentials into their Taylor series, FOIL them out, and show that the expression is consistent with $\sum_{n=0}^{\infty} \frac{\lambda^{n}}{n!}[\hat{A}, \hat{B}]_{n}$. However, we will go a different way, which is to show consistency with the uniqueness theorem from last problem set.
a) First, take the derivative of $f(\lambda)=e^{-\lambda \hat{B}} \hat{A} e^{\lambda \hat{B}}$ and show that the result is consistent with:

$$
f^{\prime}(\lambda)=[\hat{f}, \hat{B}]
$$

$2^{\text {nd }}$ Hint: You can rearrange an operator: $\widehat{B} e^{\lambda \widehat{B}}$ as: $e^{\lambda \widehat{B}} \widehat{B}$ since an operator and function of that same operator commute.
b) Next, show that the derivative of $\hat{f}(\lambda)=\sum_{n=0}^{\infty} \frac{\lambda^{n}}{n!}[\hat{A}, \hat{B}]_{n}$ is consistent with the result from pt. a. I hope you remember that $\frac{n}{n!}=\frac{1}{(n-1)!}$, and here is a useful identity:

$$
[\hat{f}, \hat{B}]=\sum_{n=0}^{\infty} \frac{\lambda^{n}}{n!}[\hat{A}, \hat{B}]_{n+1}
$$

Aside: The uniqueness theorem states that there can only be one solution to a differential equation under certain conditions. Here, you are showing that the differential equations $\frac{\partial}{\partial \lambda} e^{-\lambda \hat{B}} \hat{A} e^{\lambda \hat{B}}$ and $\frac{\partial}{\partial \lambda} \sum_{n=0}^{\infty} \frac{\lambda^{n}}{n!}[\hat{A}, \widehat{B}]_{n}$ are both $f^{\prime}(\lambda)=[\hat{f}, \hat{B}]$, and thus it must be true that the solutions to $f^{\prime}(\lambda): e^{-\lambda \hat{B}} \hat{A} e^{\lambda \hat{B}}$ and $\sum_{n=0}^{\infty} \frac{\lambda^{n}}{n!}[\hat{A}, \hat{B}]_{n}$, are in fact the same.

Answer: a) The derivative is:

$$
f^{\prime}(\lambda)=-\widehat{B} e^{-\lambda \hat{B}} \hat{A} e^{\lambda \hat{B}}+e^{-\lambda \hat{B}} \hat{A} \hat{B} e^{\lambda \widehat{B}}=-\widehat{B} e^{-\lambda \hat{B}} \hat{A} e^{\lambda \hat{B}}+e^{-\lambda \hat{B}} \hat{A} e^{\lambda \hat{B}} \hat{B}
$$

Given that I gave you the answer, you can easily show that:

$$
-\hat{B} \hat{f}(\lambda)+\hat{f}(\lambda) \hat{B}=[\hat{f}, \hat{B}]
$$

b) Next, take the other derivative:

$$
\frac{\partial}{\partial \lambda} \sum_{n=0}^{\infty} \frac{\lambda^{n}}{n!}[\hat{A}, \hat{B}]_{n}=\sum_{n=0}^{\infty} n \frac{\lambda^{n-1}}{n!}[\hat{A}, \hat{B}]_{n}=\sum_{n=1}^{\infty} \frac{\lambda^{n-1}}{(n-1)!}[\hat{A}, \hat{B}]_{n}
$$

If that last step confused you, note that in the middle expression that the $n=0$ is 0 , so you don't need to include it in the summation. Also we used the fact that: $\frac{n}{n!}=\frac{1}{(n-1)!}$. Last, we can use the fact that we can switch $n^{\prime}=n-1$ as:

$$
\sum_{n=1}^{\infty} \frac{\lambda^{n-1}}{(n-1)!}[\hat{A}, \hat{B}]_{n}=\sum_{n^{\prime}=0}^{\infty} \frac{\lambda^{n^{\prime}}}{n^{\prime}!}[\hat{A}, \hat{B}]_{n^{\prime}+1}=[\hat{f}, \hat{B}]=f^{\prime}(\lambda)
$$

so the proof is complete.

