
Chem 542 Problem Set 6 

1. Using the rules of Dirac notation algebra, prove or evaluate the following: 

a) If 𝑋̂ and 𝑌̂ are operators, then we can say that 𝑋̂𝑌̂ is also an operator. Can you show 

that the trace of 𝑋̂𝑌̂: 𝑡𝑟(𝑋̂𝑌̂) is equal to 𝑡𝑟(𝑌̂𝑋̂)?  

Hint: the trace of an operator Ω̂ is defined as: ∑ ⟨𝑎′|Ω̂|𝑎′⟩𝑎′  

b) Prove: (𝑋̂𝑌̂)+  =  𝑌̂+𝑋̂+, where 𝑋̂ and 𝑌̂ are operators.  

To start this derivation, first note that ⟨𝜓|(𝑋̂𝑌̂)+|𝜙⟩∗ = ⟨𝜙|(𝑋̂𝑌̂)|𝜓⟩; you will next want to 

resolve an identity (1 = ∑ |𝑎′⟩⟨𝑎′|𝑎′ ) and note that ⟨𝜙|𝑋̂|𝑎′⟩ = ⟨𝑎′|𝑋̂+|𝜙⟩∗ 

c) ∑ 𝜓𝑎′
∗ (𝑥′)𝜓𝑎′(𝑥′′)𝑎′ = 𝛿(𝑥′′ − 𝑥′), where 𝜓𝑎′(𝑥′) = 〈𝑥′|𝑎′〉. Hint, the last step is: 

〈𝑥′′|𝑥′〉 = 𝛿(𝑥′′ − 𝑥′) 

Answers: 

a) As the trace of the 𝑋̂𝑌̂ operator is defined as: ∑ ⟨𝑎′|𝑋̂𝑌̂|𝑎′⟩𝑎′ , and for the first step we 

resolve an identity: 

∑∑⟨𝑎′|𝑋̂|𝑎′⟩⟨𝑎′|𝑌̂|𝑎′⟩

𝑎′𝑎′′

 

Now you can rearrange the interior because ⟨𝑎′|𝑋̂|𝑎′⟩ and ⟨𝑎′|𝑌̂|𝑎′⟩ are just numbers: 

∑∑⟨𝑎′|𝑋̂|𝑎′⟩⟨𝑎′|𝑌̂|𝑎′⟩

𝑎′𝑎′′

= ∑∑⟨𝑎′|𝑌̂|𝑎′⟩⟨𝑎′|𝑋̂|𝑎′⟩

𝑎′𝑎′′

 

Now you can remove a resolved identity: ∑ ∑ ⟨𝑎′|𝑌̂|𝑎′⟩⟨𝑎′|𝑋̂|𝑎′⟩𝑎′𝑎′′ = ∑ ⟨𝑎′′|𝑌̂𝑋̂|𝑎′′⟩𝑎′′  

which is the same as 𝑡𝑟(𝑌̂𝑋̂). 

b) First we start with ⟨𝜓|(𝑋̂𝑌̂)+|𝜙⟩∗. This is because we can immediately use this 

expression: ⟨𝜓|(𝑋̂𝑌̂)+|𝜙⟩∗ = ⟨𝜙|(𝑋̂𝑌̂)|𝜓⟩  and go further by inserting a resolution of the 

identity: 

⟨𝜓|(𝑋̂𝑌̂)+|𝜙⟩∗ = ⟨𝜙|𝑋̂𝑌̂|𝜓⟩ = ∑⟨𝜙|𝑋̂|𝑎′⟩⟨𝑎′|𝑌̂|𝜓⟩

𝑎′

 

Next, flip the order and remember those complex conjugates: 



∑⟨𝜙|𝑋̂|𝑎′⟩⟨𝑎′|𝑌̂|𝜓⟩

𝑎′

= ∑⟨𝑎′|𝑋̂+|𝜙⟩∗⟨𝜓|𝑌̂+|𝑎′⟩∗

𝑎′

 

Since ⟨𝑎′|𝑋̂+|𝜙⟩∗ and ⟨𝜓|𝑌̂+|𝑎′⟩∗ are just numbers you can rearrange them: 

∑⟨𝑎′|𝑋̂+|𝜙⟩∗⟨𝜓|𝑌̂+|𝑎′⟩∗

𝑎′

= ∑⟨𝜓|𝑌̂+|𝑎′⟩∗⟨𝑎′|𝑋̂+|𝜙⟩∗

𝑎′

 

And you can remove the resolution of the identity: 

∑⟨𝜓|𝑌̂+|𝑎′⟩∗⟨𝑎′|𝑋̂+|𝜙⟩∗

𝑎′

= ⟨𝜓|𝑌̂+𝑋̂+|𝜙⟩∗ 

To summarize, ⟨𝜓|(𝑋̂𝑌̂)+|𝜙⟩∗ = ⟨𝜓|𝑌̂+𝑋̂+|𝜙⟩∗, which must mean that (𝑋̂𝑌̂)+  =  𝑌̂+𝑋̂+. 

                   

There is another way to do the derivation without resolving an identity. First, we note 

that, by definition: ⟨𝜓|(𝑋̂𝑌̂)
+
|𝜙⟩∗ = ⟨𝜙|(𝑋̂𝑌̂)|𝜓⟩. Recall that: (𝑋̂𝑌̂)|𝜓⟩ = 𝑋̂(𝑌̂|𝜓⟩) and that: 

⟨𝜙|(𝑋̂𝑌̂) = (⟨𝜙|𝑋̂)𝑌̂. Thus we can state:  

⟨𝜙|(𝑋̂𝑌̂)|𝜓⟩ = (⟨𝜙|𝑋̂)(𝑌̂|𝜓⟩) 

We can insert the following equivalences:  𝑌̂|𝜓⟩ = ⟨𝜓|𝑌̂+ and ⟨𝜙|𝑋̂ = 𝑋̂+|𝜙⟩ to yield: 

(⟨𝜙|𝑋̂)(𝑌̂|𝜓⟩) = (𝑋̂+|𝜙⟩)(⟨𝜓|𝑌̂+) 

When you permute the order: (𝑋̂+|𝜙⟩)(⟨𝜓|𝑌̂+) = {(⟨𝜓|𝑌̂+)(𝑋̂+|𝜙⟩)}
∗
 you have to pick up 

a complex conjugate (because you’re basically doing this: ⟨𝜙|𝜓⟩ = ⟨𝜓|𝜙⟩∗). The 

expression {(⟨𝜓|𝑌̂+)(𝑋̂+|𝜙⟩)}
∗
 is of course equal to: ⟨𝜓|𝑌̂+𝑋̂+|𝜙⟩∗. When you put the 1st 

step in with this last one you get: 

⟨𝜓|(𝑋̂𝑌̂)
+
|𝜙⟩∗ = ⟨𝜓|𝑌̂+𝑋̂+|𝜙⟩∗ 

which is the point of the proof.  

c) First insert the bra-ket notation and make one simple rearrangement: 

∑〈𝑎′|𝑥′〉〈𝑥′′|𝑎′〉

𝑎′

= ∑〈𝑥′′|𝑎′〉〈𝑎′|𝑥′〉

𝑎′

 

Now since ∑ |𝑎′⟩⟨𝑎′|𝑎′ = 1 we are left with: 

〈𝑥′′|𝑥′〉 = 𝛿(𝑥′′ − 𝑥′) 



2. Let’s say that an operator has the form: 𝑋̂ = 𝑎0 + 𝝈̂ ∙ 𝒂. This isn’t explained well, but 

what this means is that 𝝈̂ are the spin matrices in x, y and z (𝜎𝑥 , 𝜎𝑦 , 𝜎𝑧) and 𝑎0 is a 

weighted identity matrix. Likewise, 𝒂 is a vector with components 𝑎𝑥 in the x-direction, 

and the same for y and z. Thus: 𝑋̂ = 𝑎0𝐼 + 𝑎𝑥𝜎̂𝑥 + 𝑎𝑦𝜎̂𝑦 + 𝑎𝑧𝜎̂𝑧 = 

𝑋̂ = 𝑎0 [
1 0
0 1

] + 𝑎𝑥 [
0 1
1 0

] + 𝑎𝑦 [
0 −𝑖
𝑖 0

] + 𝑎𝑧 [
1 0
0 −1

] 

a) Please sum these to show what the full matrix form of 𝑋̂ is. 

b) What is 𝑡𝑟(𝑋̂)? Hint: the trace of 𝑋̂ is simply the sum of the diagonals 

c) What are 𝑡𝑟(𝝈̂ ∙ 𝑋̂)? Hint, this is really three questions in one, which are 𝑡𝑟(𝜎̂𝑥,𝑦,𝑧𝑋̂) 

Answers: a) You literally just add up the matrices into one: 

𝑋̂ = [
𝑎0 0
0 𝑎0

] + [
0 𝑎𝑥

𝑎𝑥 0
] + [

0 −𝑖𝑎𝑦

𝑖𝑎𝑦 0
] + [

𝑎𝑧 0
0 −𝑎𝑧

] = [
𝑎0 + 𝑎𝑧 𝑎𝑥 − 𝑖𝑎𝑦

𝑎𝑥 + 𝑖𝑎𝑦 𝑎0 − 𝑎𝑧
] 

b) The sum of the diagonals is: 2𝑎0 

c) The trace of: 𝑡𝑟(𝜎̂𝑥𝑋̂) = 𝑡𝑟 ([
0 1
1 0

] [
𝑎0 + 𝑎𝑧 𝑎𝑥 − 𝑖𝑎𝑦

𝑎𝑥 + 𝑖𝑎𝑦 𝑎0 − 𝑎𝑧
]) = 

𝑡𝑟 ([
𝑎𝑥 + 𝑖𝑎𝑦 𝑎0 − 𝑎𝑧

𝑎0 + 𝑎𝑧 𝑎𝑥 − 𝑖𝑎𝑦
]) = 2𝑎𝑥 

also: 𝑡𝑟(𝜎̂𝑦𝑋̂) = 𝑡𝑟 ([
0 −𝑖
𝑖 0

] [
𝑎0 + 𝑎𝑧 𝑎𝑥 − 𝑖𝑎𝑦

𝑎𝑥 + 𝑖𝑎𝑦 𝑎0 − 𝑎𝑧
]) = 𝑡𝑟 ([

−𝑖𝑎𝑥 + 𝑎𝑦 −𝑖𝑎0 + 𝑖𝑎𝑧

𝑖𝑎0 + 𝑖𝑎𝑧 𝑖𝑎𝑥 + 𝑎𝑦
]) = 2𝑎𝑦 

and: 

𝑡𝑟(𝜎̂𝑧𝑋̂) = 𝑡𝑟 ([
1 0
0 −1

] [
𝑎0 + 𝑎𝑧 𝑎𝑥 − 𝑖𝑎𝑦

𝑎𝑥 + 𝑖𝑎𝑦 𝑎0 − 𝑎𝑧
]) = 𝑡𝑟 ([

𝑎0 + 𝑎𝑧 𝑎𝑥 − 𝑖𝑎𝑦

−𝑎𝑥 − 𝑖𝑎𝑦 −𝑎0 + 𝑎𝑧
]) = 2𝑎𝑧 

3. a) Show that the determinant of the following 2×2 matrix 𝝈̂ ∙ 𝒂 is invariant under the 

similarity transformation: 

𝝈̂ ∙ 𝒂 → 𝝈̂ ∙ 𝒂′ = 𝑒𝑥𝑝 (
𝑖𝝈̂ ∙ 𝒏𝜙

2
) 𝝈̂ ∙ 𝒂 𝑒𝑥𝑝 (

−𝑖𝝈̂ ∙ 𝒏𝜙

2
) 

Hint: To state that a matrix is invariant after transformation means that the trace is the 

same before and after the transformation. Also, here are some properties of 

determinants:  𝑑𝑒𝑡{𝐴 ∙ 𝐵 ∙ 𝐶} = 𝑑𝑒𝑡{𝐶 ∙ 𝐴 ∙ 𝐵} = 𝑑𝑒𝑡{𝐵 ∙ 𝐶 ∙ 𝐴} 



b) Find 𝑎′
𝑥,𝑦,𝑧 in terms of 𝑎𝑥,𝑦,𝑧 where 𝒏 is a vector in the z direction. What this means is 

that 𝒏 has component 𝑛𝑥 in the x-direction, 𝑛𝑦 in the y-direction, and 𝑛𝑧 in the z-

direction, and thus if 𝒏 is in the z positive z direction then 𝑛𝑥 = 𝑛𝑦 = 0 and 𝑛𝑧 = 1. 

Please interpret your results. 

Answer: a) The idea is to show that: 

𝑑𝑒𝑡 {𝑒𝑥𝑝 (
𝑖𝝈̂ ∙ 𝒏𝜙

2
) ∙ (𝝈̂ ∙ 𝒂)  ∙ 𝑒𝑥𝑝 (

−𝑖𝝈̂ ∙ 𝒏𝜙

2
)} = 

𝑑𝑒𝑡 {𝑒𝑥𝑝 (
−𝑖𝝈̂ ∙ 𝒏𝜙

2
) ∙ 𝑒𝑥𝑝 (

𝑖𝝈̂ ∙ 𝒏𝜙

2
) ∙ 𝝈̂ ∙ 𝒂} = 

𝑑𝑒𝑡 {𝑒𝑥𝑝 (
−𝑖𝝈̂ ∙ 𝒏𝜙

2
+

𝑖𝝈̂ ∙ 𝒏𝜙

2
) ∙ 𝝈̂ ∙ 𝒂} = 

𝑑𝑒𝑡{𝑰 ∙ 𝝈̂ ∙ 𝒂} = 𝑑𝑒𝑡{𝝈̂ ∙ 𝒂} 

b) First, you should know that: 

 
𝑖

2
𝝈̂ ∙ 𝒏𝜙 =

𝑖𝝈̂ ∙ 𝒏𝜙

2
=

𝑖

2
𝜙 ∙ 𝑛𝑥 [

0 1
−1 0

] +
𝑖

2
𝜙 ∙ 𝑛𝑦 [

0 𝑖
−𝑖 0

] +
𝑖

2
𝜙 ∙ 𝑛𝑧 [

1 0
0 −1

] 

Since we are in the z direction 𝑛𝑥 = 𝑛𝑦 = 0 and thus:  

𝑖

2
𝜙 ∙ 𝝈̂ ∙ 𝒏 = [

𝑖

2
𝜙 0

0 −
𝑖

2
𝜙

] 

and taking the exponential means: 𝑒𝑥𝑝 (
𝑖𝝈̂∙𝒏𝜙

2
) = [𝑒

𝑖

2
𝜙 0

0 𝑒−
𝑖

2
𝜙
].  

Likewise: 𝑒𝑥𝑝 (
−𝑖𝝈̂∙𝒏𝜙

2
) = [𝑒

−
𝑖

2
𝜙 0

0 𝑒
𝑖

2
𝜙
], and: 𝝈̂ ∙ 𝒂 = [

𝑎𝑧 𝑎𝑥 − 𝑖𝑎𝑦

𝑎𝑥 + 𝑖𝑎𝑦 −𝑎𝑧
] 

Now we have to solve this: 

 𝑒𝑥𝑝 (
𝑖𝝈̂ ∙ 𝒏𝜙

2
) 𝝈̂ ∙ 𝒂 𝑒𝑥𝑝 (

−𝑖𝝈̂ ∙ 𝒏𝜙

2
) = [𝑒

𝑖
2
𝜙 0

0 𝑒−
𝑖
2
𝜙
] [

𝑎𝑧 𝑎𝑥 − 𝑖𝑎𝑦

𝑎𝑥 + 𝑖𝑎𝑦 −𝑎𝑧
] [𝑒

−
𝑖
2
𝜙 0

0 𝑒
𝑖
2
𝜙
]

= [𝑒
𝑖
2
𝜙 0

0 𝑒−
𝑖
2
𝜙
] [

𝑎𝑧 ∙ 𝑒−
𝑖
2
𝜙 (𝑎𝑥 − 𝑖𝑎𝑦) ∙ 𝑒

𝑖
2
𝜙

(𝑎𝑥 + 𝑖𝑎𝑦) ∙ 𝑒−
𝑖
2
𝜙

−𝑎𝑧 ∙ 𝑒
𝑖
2
𝜙

] = 



[
𝑒

𝑖
2
𝜙

∙ 𝑎𝑧 ∙ 𝑒−𝑖
2
𝜙

(𝑎𝑥 − 𝑖𝑎𝑦) ∙ 𝑒𝑖𝜙

(𝑎𝑥 + 𝑖𝑎𝑦) ∙ 𝑒−𝑖𝜙 𝑒−𝑖
2
𝜙

∙ −𝑎𝑧 ∙ 𝑒
𝑖
2
𝜙
] = [

𝑎𝑧 (𝑎𝑥 − 𝑖𝑎𝑦) ∙ 𝑒𝑖𝜙

(𝑎𝑥 + 𝑖𝑎𝑦) ∙ 𝑒−𝑖𝜙 −𝑎𝑧

] 

Hence, we see that: 𝑎′
𝑧 = 𝑎𝑧 while the off-diagonal elements have to be evaluated as: 

(𝑎𝑥 − 𝑖𝑎𝑦) ∙ 𝑒𝑖𝜙 = (𝑎𝑥 − 𝑖𝑎𝑦)(cos(𝜙) + 𝑖 ∙ 𝑠𝑖𝑛(𝜙))

= 𝑎𝑥 ∙ cos(𝜙) + 𝑎𝑦 ∙ 𝑠𝑖𝑛(𝜙) − 𝑖{−𝑎𝑥 ∙ sin(𝜙) + 𝑎𝑦 ∙ cos(𝜙)} 

And (𝑎𝑥 + 𝑖𝑎𝑦) ∙ 𝑒−𝑖𝜙 = (𝑎𝑥 + 𝑖𝑎𝑦) ∙ (cos(𝜙) − 𝑖 ∙ sin(𝜙)) = 

𝑎𝑥 ∙ cos(𝜙) + 𝑎𝑦 ∙ 𝑠𝑖𝑛(𝜙) + 𝑖{−𝑎𝑥 ∙ sin(𝜙) + 𝑎𝑦 ∙ cos(𝜙)} 

Since the real components of the off diagonal should be equal, thus:  

𝑎′
𝑥 = 𝑎𝑥 ∙ cos(𝜙) + 𝑎𝑦 ∙ 𝑠𝑖𝑛(𝜙) 

Likewise the imaginary components switch signs but reveal:  

𝑎′
𝑦 = 𝑎𝑦 ∙ cos(𝜙)−𝑎𝑥 ∙ sin(𝜙) 

These are simple rotations.  

4. Here you are going to practice with similarity transforms. a. Please construct the 2×2 

transformation matrix 𝑈̂+ that connects the Sz diagonal basis to the Sx basis. You can 

figure it out using relationships derived from:  

|𝑆𝑋; +⟩ = 𝑈̂+| +⟩ 

and 

|𝑆𝑋; −⟩ = 𝑈̂+| −⟩ 

and the fact that: | +⟩ = [
1
0
], | −⟩ = [

0
1
], |𝑆𝑋; +⟩ = [

1

√2
1

√2

], |𝑆𝑋; −⟩ = [

1

√2
−1

√2

]. 

b. Now try to construct the 2×2 transformation matrix 𝑈̂ using the general relation: 

𝑈̂ = ∑|𝑏(𝑟)⟩

𝑟

⟨𝑎(𝑟)| 

Hint: As it applies to this question, this means:  

𝑈̂ = |𝑆𝑋; +⟩⟨+| + |𝑆𝑋; −⟩⟨−| 

c. Can you show that 𝑈̂+𝑈̂ = 1? 

Answer: a. First, we construct a 2×2 matrix with elements xij such that:  



[
𝑥11 𝑥12

𝑥21 𝑥22
] [

1
0
] =

[
 
 
 
1

√2
1

√2]
 
 
 

 

and 

[
𝑥11 𝑥12

𝑥21 𝑥22
] [

0
1
] =

[
 
 
 

1

√2
−1

√2]
 
 
 

 

Multiply these out:  

𝑥11 ∙ 1 + 𝑥12 ∙ 0 =
1

√2
; 𝑥21 ∙ 1 + 𝑥22 ∙ 0 =

1

√2
; 𝑥11 ∙ 0 + 𝑥12 ∙ 1 =

1

√2
; 𝑥21 ∙ 0 + 𝑥22 ∙ 1 = −

1

√2
  

It is immediately clear that: 𝑥11 =
1

√2
;  𝑥21 =

1

√2
;  𝑥12 =

1

√2
;  𝑥22 = −

1

√2
 

And the transformation matrix is: [

1

√2

1

√2

1

√2
−

1

√2

] =
1

√2
[
1 1

1 −1
]. 

b. First insert the definition of |𝑆𝑋; +⟩ = | +⟩ +
1

√2
|−⟩ and |𝑆𝑋; −⟩ = | −⟩ −

1

√2
|−⟩ : 

𝑈 = (
1

√2
| +⟩ +

1

√2
|−⟩) ⟨+| + (

1

√2
| +⟩ +

1

√2
|−⟩) ⟨−| = 

(
1

√2
| +⟩⟨+| +

1

√2
|−⟩⟨+|) + (

1

√2
| +⟩⟨−| −

1

√2
|−⟩⟨−|) = 

1

√2
(| +⟩⟨+| + |−⟩⟨+|) + (| +⟩⟨−| − |−⟩⟨−|) 

This is equivalent to [

1

√2

1

√2

1

√2
−

1

√2

] =
1

√2
[
1 1

1 −1
] 

c. All you have to do is show:  

1

√2
[
1 1
1 −1

]
1

√2
[
1 1
1 −1

] =
1

2
[
1 1
1 −1

] [
1 1
1 −1

] = [
1 + 1 1 − 1
1 − 1 1 + 1

] = [
1 0
0 1

] 

 

5. Let’s say you are using quantum chemistry to model a solid-state material such as 

semiconducting CdSe. The electronic structure can be solved using the “tight binding” 

approximation, where you model the interaction of nearest neighbor atoms only. In 



CdSe, we model the cadmium’s 5s and 5p orbitals, and each orbital has a certain “self” 

energy 𝜀𝐶𝑑,𝑠 (for the 5s) and 𝜀𝐶𝑑,𝑝𝑥,𝑦,𝑧 (for the three 5p’s). A Hamiltonian matrix that 

describes a cadmium atom by itself is: 

               |𝑠𝐶𝑑⟩ |𝑝𝑥,𝐶𝑑⟩ |𝑝𝑦,𝐶𝑑⟩ |𝑝𝑧,𝐶𝑑⟩ 

⟨𝑠𝐶𝑑|

⟨𝑝𝑥,𝐶𝑑|

⟨𝑝𝑦,𝐶𝑑|

⟨𝑝𝑧,𝐶𝑑| [
 
 
 
𝜀𝐶𝑑,𝑠 0    0  0

0   𝜀𝐶𝑑,𝑝    0  0

0  0    𝜀𝐶𝑑,𝑝   0

0  0    0    𝜀𝐶𝑑,𝑝]
 
 
 

 

The eigenvalues are 𝜀𝐶𝑑,𝑠 and three degenerate 𝜀𝐶𝑑,𝑝, which makes perfect sense. The 

trace is 𝜀𝐶𝑑,𝑠 + 3𝜀𝐶𝑑,𝑝.  

When you throw in a single nearby Se atom (with its 4s and 4p orbitals) you get this 

Hamiltonian matrix: 

𝑠𝐶𝑑 𝑝𝑥,𝐶𝑑  𝑝𝑦,𝐶𝑑  𝑝𝑧,𝐶𝑑   𝑠𝑆𝑒  𝑝𝑥,𝑆𝑒 𝑝𝑦,𝑆𝑒 𝑝𝑧,𝑆𝑒  

𝑠𝐶𝑑

𝑝𝑥,𝐶𝑑

𝑝𝑦,𝐶𝑑

𝑝𝑧,𝐶𝑑

𝑠𝑆𝑒

𝑝𝑥,𝑆𝑒

𝑝𝑦,𝑆𝑒

𝑝𝑧,𝑆𝑒
[
 
 
 
 
 
 
 
 
𝜀𝐶𝑑,𝑠 0 0 0 𝑉𝑠𝑠 𝑉𝑠𝑝 𝑉𝑠𝑝 𝑉𝑠𝑝

0 𝜀𝐶𝑑,𝑝 0 0 𝑉𝑝𝑠 𝑉𝑥𝑥 𝑉𝑥𝑦 𝑉𝑥𝑦

0 0 𝜀𝐶𝑑,𝑝 0 𝑉𝑝𝑠 𝑉𝑥𝑦 𝑉𝑥𝑥 𝑉𝑥𝑦

0 0 0 𝜀𝐶𝑑,𝑝 𝑉𝑝𝑠 𝑉𝑥𝑦 𝑉𝑥𝑦 𝑉𝑥𝑥

𝑉𝑠𝑠 𝑉𝑝𝑠 𝑉𝑝𝑠 𝑉𝑝𝑠 𝜀𝑆𝑒,𝑠 0 0 0

𝑉𝑝𝑠 𝑉𝑥𝑥 𝑉𝑥𝑦 𝑉𝑥𝑦 0 𝜀𝑆𝑒,𝑝 0 0

𝑉𝑝𝑠 𝑉𝑥𝑦 𝑉𝑥𝑥 𝑉𝑥𝑦 0 0 𝜀𝑆𝑒,𝑝 0

𝑉𝑝𝑠 𝑉𝑥𝑦 𝑉𝑥𝑦 𝑉𝑥𝑥 0 0 0 𝜀𝑆𝑒,𝑝]
 
 
 
 
 
 
 
 

 

where all the 𝜀𝑆𝑒,𝑠,𝑝 matrix elements are the orbital energies for Se, and the coupling 

terms 𝑉 represent the interaction of the Cd and Se atoms’ atomic orbitals. Let’s say you 

add “n” more Cd and Se atoms to the matrix and calculate the eigenvalues, you are 

able to determine the energies of the (CdSe)n cluster. If you then allow n→∞ then you 

are able to model the true solid state 

electronic structure. FYI the various energies 

and coupling terms can be derived from 

experiment or higher-level theories, which is 

why the tight binding method of quantum 

mechanics is called “semi-empirical”.  

None of this is the question- here is the 

real problem. It turns out that you can’t model 

an infinite number of atoms, and thus you are 

going to have to have a surface with atoms 

that are missing one or more bonding 

partners. This results in “surface states” 



appearing in the set of eigenvalues. This question seeks to understand surface states 

using the tight binding formalism. To begin, we first note that Cd has a tetrahedral 

environment as shown below, with four Se atoms that we label a, b, c, or d based on its 

coordinates within the cubic unit cell (CdSe may adopt a zinc blende structure which is 

in the cubic family). It makes more sense to think of the bonds as sp3 hybridized orbitals 

rather than use the “block” s, px, py and pz states. How do we transform the Cd matrix 

from the block to the sp3 hybrid form? First, note that the four sp3 bonding orbitals are: 

Hybrid 1: |𝑠𝑝𝑎
3⟩~|𝑠⟩ + |𝑝𝑥⟩ + |𝑝𝑦⟩ + |𝑝𝑧⟩ 

Hybrid 2: |𝑠𝑝𝑏
3⟩~|𝑠⟩ + |𝑝𝑥⟩ − |𝑝𝑦⟩ − |𝑝𝑧⟩ 

Hybrid 3: |𝑠𝑝𝑐
3⟩~|𝑠⟩ − |𝑝𝑥⟩ + |𝑝𝑦⟩ − |𝑝𝑧⟩ 

Hybrid 4: |𝑠𝑝𝑑
3⟩~|𝑠⟩ − |𝑝𝑥⟩ − |𝑝𝑦⟩ + |𝑝𝑧⟩ 

Did you notice how the +’s and –‘s track the location of the Se atoms in the unit cell? 

a.  Now your question is first to derive a matrix, 𝑈̂+, that transforms a vector that 

describes the cadmium block orbitals in the block form: 

[
 
 
 
 
|𝑠⟩

|𝑝𝑥⟩

|𝑝𝑦⟩

|𝑝𝑧⟩]
 
 
 
 

 

into the hybrid form. Next, apply 𝑈̂+ to the cadmium Hamiltonian: 

𝐻̂ =

[
 
 
 
𝜀𝑠 0 0 0
0 𝜀𝑝 0 0

0 0 𝜀𝑝 0

0 0 0 𝜀𝑝]
 
 
 

 

using the formula 𝑈̂+𝐻̂𝑈̂ to transform it into the sp3 hybrid form. Hint, you also need to 

know 𝑈̂, which you can figure out using 𝑈̂+𝑈̂ = 1.  

b.  When you calculate 𝑈̂+𝐻̂𝑈̂, its going to look something like this: 

                                                                      |𝑠𝑝𝑎
3⟩ |𝑠𝑝𝑏

3⟩ |𝑠𝑝𝑐
3⟩ |𝑠𝑝𝑑

3⟩  

⟨𝑠𝑝𝑎
3|

⟨𝑠𝑝𝑏
3|

⟨𝑠𝑝𝑐
3|

⟨𝑠𝑝𝑑
3|

[

  𝑎       𝑏        𝑏        𝑏
  𝑏      𝑎        𝑏        𝑏
  𝑏      𝑏        𝑎        𝑏
  𝑏      𝑏        𝑏        𝑎

] 

where 𝑎 and 𝑏 are functions of 𝜀𝑠,𝑝.  



What are the eigenvalues and trace of this matrix? Discuss whether the result makes 

sense. 

c.  If one or more of the Se atoms are missing for the surface bound Cd, then we are 

going to get undesirable surface states. Instead, what we can do is pretend to add a 

ligand that passivates the surface by raising the energy of the orbital. For example, if we 

are missing two Se atoms, at positions a and c, then we can add “𝛿” amount of energy 

to those diagonal elements as follows: 

                                                                 |𝑠𝑝𝑎
3⟩    |𝑠𝑝𝑏

3⟩     |𝑠𝑝𝑐
3⟩   |𝑠𝑝𝑑

3⟩  

⟨𝑠𝑝𝑎
3|

⟨𝑠𝑝𝑏
3|

⟨𝑠𝑝𝑐
3|

⟨𝑠𝑝𝑑
3|

[

  𝑎 + 𝛿       𝑏        𝑏        𝑏
  𝑏      𝑎        𝑏        𝑏
  𝑏      𝑏        𝑎 + 𝛿        𝑏
  𝑏      𝑏        𝑏        𝑎

] 

This passivates the surface along these bond vectors and prevents surface states from 

forming. Now we ultimately need to transform the above back to the block form to use it. 

How do you do that? Please use Matlab to do so and show the results. 

d.  Let’s say that the Cd atom was by itself and needs passivation along all four bond 

vectors. Can you represent: 

                                                         |𝑠𝑝𝑎
3⟩        |𝑠𝑝𝑏

3⟩         |𝑠𝑝𝑐
3⟩        |𝑠𝑝𝑑

3⟩  

⟨𝑠𝑝𝑎
3|

⟨𝑠𝑝𝑏
3|

⟨𝑠𝑝𝑐
3|

⟨𝑠𝑝𝑑
3|

[

  𝑎 + 𝛿       𝑏        𝑏        𝑏
  𝑏      𝑎 + 𝛿        𝑏        𝑏
  𝑏      𝑏        𝑎 + 𝛿        𝑏
  𝑏      𝑏        𝑏        𝑎 + 𝛿

] 

in the block form and discuss why the result makes sense? 

Last Hint: I am basing this problem off of Lee et al. Phys Rev. B (2004), 69, 045316. 

You might want to look at it. There are also some Matlab codes in the appendix. 

Answer: a. First define the matrices using Matlab: 

syms es ep d; 
cdH=[es, 0, 0, 0; 0, ep, 0, 0; 0, 0, ep, 0; 0 0 0 ep]; 
eig(cdH) 
U=[1, 1, 1, 1; 1, 1, -1, -1; 1, -1, 1, -1; 1, -1, -1, 1]; 
transU=inv(U); 
sp3cd=transU*cdH*U; 
sp3cd 

sp3cd = 

[ (3*ep)/4 + es/4,     es/4 - ep/4,     es/4 - ep/4,     es/4 - ep/4] 

[     es/4 - ep/4, (3*ep)/4 + es/4,     es/4 - ep/4,     es/4 - ep/4] 

[     es/4 - ep/4,     es/4 - ep/4, (3*ep)/4 + es/4,     es/4 - ep/4] 

https://journals.aps.org/prb/abstract/10.1103/PhysRevB.69.045316


[     es/4 - ep/4,     es/4 - ep/4,     es/4 - ep/4, (3*ep)/4 + es/4] 

Let’s make that look nicer: 

                                                    |𝑠𝑝𝑎
3⟩            |𝑠𝑝𝑏

3⟩          |𝑠𝑝𝑐
3⟩          |𝑠𝑝𝑑

3⟩  

⟨𝑠𝑝𝑎
3|

⟨𝑠𝑝𝑏
3|

⟨𝑠𝑝𝑐
3|

⟨𝑠𝑝𝑑
3| [

 
 
 
 
 
 
 
𝜀𝑠

4
+

3 ∙ 𝜀𝑝

4

𝜀𝑠

4
−

𝜀𝑝

4

𝜀𝑠

4
−

𝜀𝑝

4

𝜀𝑠

4
−

𝜀𝑝

4
𝜀𝑠

4
−

𝜀𝑝

4

𝜀𝑠

4
+

3 ∙ 𝜀𝑝

4

𝜀𝑠

4
−

𝜀𝑝

4

𝜀𝑠

4
−

𝜀𝑝

4
𝜀𝑠

4
−

𝜀𝑝

4

𝜀𝑠

4
−

𝜀𝑝

4

𝜀𝑠

4
+

3 ∙ 𝜀𝑝

4

𝜀𝑠

4
−

𝜀𝑝

4
𝜀𝑠

4
−

𝜀𝑝

4

𝜀𝑠

4
−

𝜀𝑝

4

𝜀𝑠

4
−

𝜀𝑝

4

𝜀𝑠

4
+

3 ∙ 𝜀𝑝

4 ]
 
 
 
 
 
 
 

 

 

b. First define a new matrix as: 

delta=[d, 0, 0, 0; 0, 0, 0, 0; 0, 0, d, 0; 0, 0, 0, 0]; 
newsp3cd=sp3cd+delta; 

newsp3cd = 

 [ d + (3*ep)/4 + es/4,     es/4 - ep/4,         es/4 - ep/4,     es/4 - ep/4] 

[         es/4 - ep/4, (3*ep)/4 + es/4,         es/4 - ep/4,     es/4 - ep/4] 

[         es/4 - ep/4,     es/4 - ep/4, d + (3*ep)/4 + es/4,     es/4 - ep/4] 

[         es/4 - ep/4,     es/4 - ep/4,         es/4 - ep/4, (3*ep)/4 + es/4] 

Let’s make that look nicer: 

                                                    |𝑠𝑝𝑎
3⟩            |𝑠𝑝𝑏

3⟩               |𝑠𝑝𝑐
3⟩              |𝑠𝑝𝑑

3⟩  

⟨𝑠𝑝𝑎
3|

⟨𝑠𝑝𝑏
3|

⟨𝑠𝑝𝑐
3|

⟨𝑠𝑝𝑑
3| [

 
 
 
 
 
 
 
𝜀𝑠

4
+

3 ∙ 𝜀𝑝

4
+ 𝛿

𝜀𝑠

4
−

𝜀𝑝

4

𝜀𝑠

4
−

𝜀𝑝

4

𝜀𝑠

4
−

𝜀𝑝

4
𝜀𝑠

4
−

𝜀𝑝

4

𝜀𝑠

4
+

3 ∙ 𝜀𝑝

4

𝜀𝑠

4
−

𝜀𝑝

4

𝜀𝑠

4
−

𝜀𝑝

4
𝜀𝑠

4
−

𝜀𝑝

4

𝜀𝑠

4
−

𝜀𝑝

4

𝜀𝑠

4
+

3 ∙ 𝜀𝑝

4
+ 𝛿

𝜀𝑠

4
−

𝜀𝑝

4
𝜀𝑠

4
−

𝜀𝑝

4

𝜀𝑠

4
−

𝜀𝑝

4

𝜀𝑠

4
−

𝜀𝑝

4

𝜀𝑠

4
+

3 ∙ 𝜀𝑝

4 ]
 
 
 
 
 
 
 

 

 

Next we transform back to the block form: 

newcdH=U*newsp3cd*transU 

[ d/2 + es,        0,      d/2,        0] 

[        0, d/2 + ep,        0,      d/2] 

[      d/2,        0, d/2 + ep,        0] 

[        0,      d/2,        0, d/2 + ep] 

Again let’s make this more readable: 

        |𝑠𝐶𝑑⟩        |𝑝𝑥,𝐶𝑑⟩      |𝑝𝑦,𝐶𝑑⟩      |𝑝𝑧,𝐶𝑑⟩ 



⟨𝑠𝐶𝑑|

⟨𝑝𝑥,𝐶𝑑|

⟨𝑝𝑦,𝐶𝑑|

⟨𝑝𝑧,𝐶𝑑| [
 
 
 
 
𝜀𝑠 + 𝛿 2⁄ 0 𝛿 2⁄ 0

0 𝜀𝑝 + 𝛿 2⁄ 0 𝛿 2⁄

𝛿 2⁄ 0 𝜀𝑝 + 𝛿 2⁄ 0

0 𝛿 2⁄ 0 𝜀𝑝 + 𝛿 2⁄ ]
 
 
 
 

 

c. Likewise: 

delta=[d, 0, 0, 0; 0, d, 0, 0; 0, 0, d, 0; 0, 0, 0, d]; 
newsp3cd=sp3cd+delta; 
newcdH=U*newsp3cd*transU; 

newcdH = 

 [ d + es,      0,      0,      0] 

[      0, d + ep,      0,      0] 

[      0,      0, d + ep,      0] 

[      0,      0,      0, d + ep] 

Which looks much better when using the word editor: 

 

 

 

                          |𝑠𝐶𝑑⟩   |𝑝𝑥,𝐶𝑑⟩ |𝑝𝑦,𝐶𝑑⟩ |𝑝𝑧,𝐶𝑑⟩ 

⟨𝑠𝐶𝑑|

⟨𝑝𝑥,𝐶𝑑|

⟨𝑝𝑦,𝐶𝑑|

⟨𝑝𝑧,𝐶𝑑| [
 
 
 
 
𝜀𝑠 + 𝛿 0 0 0

0 𝜀𝑝 + 𝛿 0 0

0 0 𝜀𝑝 + 𝛿 0

0 0 0 𝜀𝑝 + 𝛿]
 
 
 
 

 

You simply raise the energy of every diagonal element by 𝛿. 

 

  



Appendix 

Matlab symbolic matrices, first define some symbolic variables, and put them in matrix form: 

 

syms a b; 
Hmatrix=[a, b; b, a]; 

 

We can ask the eigenvalues of this equation: 

eig(Hmatrix) 

ans = 

 a + b 

 a - b 

 

Next, lets add off diagonal elements: 

syms a b delta; 
dm=[0 delta; delta, 0]; 
newHmatrix=Hmatrix+dm; 

 

And now we can calculate the eigenvalues of this. 

eig(newHmatrix) 

ans = 

 a - b - delta 

 a + b + delta 

Here is the inverse of the operator: 

invHmatrix=inv(Hmatrix) 
invHmatrix 

ans = 

[ a^2/(a^2 - b^2) - b^2/(a^2 - b^2),                                 0] 

[                                 0, a^2/(a^2 - b^2) - b^2/(a^2 - b^2)] 

 

Now normally I would expect the above to be the identity matrix. It is, its just not clear because 

there are no associated values. To demonstrate, you can assign values to a and b and then re-

evaluate as follows: 

a=5; b=9; 
eval(Hmatrix) 

ans = 

 

     5     9 

     9     5 
eval(invHmatrix) 

ans = 



 

   -0.0893    0.1607 

    0.1607   -0.0893 
eval(invHmatrix*Hmatrix) 

ans = 

     1     0 

     0     1 

So, you have clearly ideintified the inverse. For similarity transforms, the inverse of a matrix is 

the definition of the transpose.  


