
Chem 542 Problem Set 5 

1) Math fun! When you have to prove something like: 

𝑒𝑥 = ∑
1

𝑛!
𝑥𝑛

∞

𝑛=0

 

we often evaluate just a few terms of the series: ∑
𝑥𝑛

𝑛!
∞
𝑛=0 = 1 + 𝑥 +

𝑥2

2
… which seems to 

approach 𝑒𝑥 if you plug in some values for x. Then we say, “good enough”! However, 

there is a vigorous way to solve this using the “uniqueness theorem of differential 

equations,” which stipulates that 𝑒𝑥 and ∑
𝑥𝑛

𝑛!
∞
𝑛=0  are equal if their derivatives are the 

same. We know that: 
𝜕

𝜕𝑥
𝑒𝑥 = 𝑒𝑥, so what we need to do here is to show that:  

𝜕

𝜕𝑥
∑

1

𝑛!
𝑥𝑛

∞

𝑛=0

= ∑
1

𝑛!
𝑥𝑛

∞

𝑛=0

 

which is of course 𝑒𝑥. So, have at it.  

Hint:  

∑ 𝑛 ∙
1

𝑛!

∞

𝑛=0

= ∑ 𝑛 ∙
1

𝑛!

∞

𝑛=1

 

since the 𝑛 = 0 term of the sum doesn’t contribute. Next, we can state:  

∑ 𝑛 ∙
1

𝑛!

∞

𝑛=1

= ∑
1

(𝑛 − 1)!

∞

𝑛=1

 

The final step of the proof requires a substitution of variables. 

Answer: First do the derivative:  

𝜕

𝜕𝑥
∑

𝑥𝑛

𝑛!

∞

𝑛=0

= ∑ 𝑛 ∙
𝑥𝑛−1

𝑛!

∞

𝑛=0

 

and use the hint about simplifying the result: ∑ 𝑛 ∙
𝑥𝑛−1

𝑛!
∞
𝑛=0 = ∑ 𝑛 ∙

𝑥𝑛−1

𝑛!
∞
𝑛=1 = ∑

𝑥𝑛−1

(𝑛−1)!
∞
𝑛=1 . 

Last step, we can just transform variables 𝑞 = 𝑛 − 1, which makes the lower limit (𝑛 =

1): 𝑞 = 𝑛 − 1 = 1 − 1 = 0 and changes the factorial and exponent of x as: 

∑
𝑥𝑛−1

(𝑛 − 1)!

∞

𝑛=1

= ∑
𝑥𝑞

𝑞!

∞

𝑞=0

 



Since the “q” or “n” label is arbitrary, we have proved our case since ∑
𝑥𝑞

𝑞!
∞
𝑞=0 = 𝑒𝑥. 

2) You should know about atomic units, in which ℏ = 1, 
1

4πϵ0
= 1, e2 = 1 (the charge of 

an electron), length is in Bohrs (𝑎0=0.0529 nm), and the mass of an electron is: me = 1.  

As a result, the Hamiltonian of a multielectron system: 

−ℏ2

2𝑚
∇1

2 +
−ℏ2

2𝑚
∇1

2 −
𝑍𝑒2

4𝜋𝜖0𝑟1
−

𝑍𝑒2

4𝜋𝜖0𝑟2
+

𝑒2

4𝜋𝜖0|𝑟1 − 𝑟2|
 

becomes: 

−
1

2
∇1

2 + −
1

2
∇1

2 −
𝑍

𝑟1
−

𝑍

𝑟2
+

1

|𝑟1 − 𝑟2|
 

While this is clearly more simple, you should know that something else has to become 

more complex. In fact, that would be the energy and time.  

a. Can you determine what energy is in atomic units, which is called a Hartree. Please 

express 1 Hartree in Joules and show your work! Hint: what you want to do is calculate 

energy only using the units above defined as 1 (ℏ, mass of the electron, and a Bohr for 

length). For example, kinetic energy is 
𝑝2

2𝑚
; although for units you scrap the “2”: 𝐸 =

𝑝2

𝑚
. 

b. Can you determine what time is for atomic units (in seconds please)? 

Answer: a. The correct expression is: 
ℏ2

me𝑎0
2 = 4.36 × 10−18 𝐽 

b. Since ℏ is energy times time, you can just multiply it by the inverse of a Hartree: 

ℏ ∙
me𝑎0

2

ℏ2 =
me𝑎0

2

ℏ
= 2.42 × 10−17 𝑠. 

 

 

3) Here we are going to develop a matrix representation 

Ω̂ of the Stern-Gerlach device shown here: 

 

This takes any polarized input [
𝑧1
𝑧2

], whether it is |𝑆𝑧 , +⟩ = [
1
0

], |𝑆𝑧, −⟩ = [
0
1

], |𝑆𝑥, +⟩ =

1

√2
[
1
1

], |𝑆𝑥, −⟩ =
1

√2
[

1
−1

], |𝑆𝑦, +⟩ 
1

√2
[
1
𝑖

], or |𝑆𝑦, −⟩ =
1

√2
[

1
−𝑖

], and outputs ~|𝑆𝑧, +⟩ = [
𝑧1
0

]. 

Here, you must determine the matrix representation of Ω̂ such that: 

Ω̂ [
𝑧1
𝑧2

] = [
a 𝑏
𝑐 𝑑

] [
𝑧1
𝑧2

] = [
𝑧1
0

] 



Can you use standard matrix multiplication to figure out what Ω̂ is? Hint: 𝑧1 and 𝑧2 are 

independent, like vectors x and y. As a result, an equation such as: 𝑎 ∙ 𝑥 = 𝑏 ∙ 𝑦 can only 

have the solution a=b=0.  

Answer: Multiply it out: 

[
a 𝑏
𝑐 𝑑

] [
𝑧1
𝑧2

] = [
𝑎 ∙ 𝑧1 + 𝑏 ∙ 𝑧2
𝑐 ∙ 𝑧1 + 𝑑 ∙ 𝑧2

] = [
𝑧1
0

] 

Therefore 𝑎 ∙ 𝑧1 + 𝑏 ∙ 𝑧2 = 𝑧1. Since 𝑧2 isn’t part of the equality on the right 𝑏 must be 0, 

leaving 𝑎 =1. Next, 𝑐 ∙ 𝑧1 + 𝑑 ∙ 𝑧2 = 0 and therefore 𝑐 ∙ 𝑧1 = −𝑑 ∙ 𝑧2. Since there cannot 

be a relationship between 𝑧1 and 𝑧2, the only answer to this is 𝑐 = 0 and 𝑑 = 0. As a 

result, the matrix representation of the operator is: 

Ω̂ = [
a 𝑏
𝑐 𝑑

] = [
1 0
0 0

] 

4) Now we will redo question 3 using the matrix representation of the Ω̂ operator in the 

Sz basis:  

Ω̂ = ∑ ∑ |𝑖⟩⟨𝑖|Ω̂|𝑗⟩⟨𝑗|

𝑆𝑧,−

𝑗=𝑆𝑧,+

𝑆𝑧,−

𝑖=𝑆𝑧,+

 

= |𝑆𝑧, +⟩⟨𝑆𝑧, +|Ω̂|𝑆𝑧 , +⟩⟨𝑆𝑧, +| + |𝑆𝑧, −⟩⟨𝑆𝑧 , −|Ω̂|𝑆𝑧, +⟩⟨𝑆𝑧, +| 

+ |𝑆𝑧, +⟩⟨𝑆𝑧, +|Ω̂|𝑆𝑧, −⟩⟨𝑆𝑧, −| + |𝑆𝑧, −⟩⟨𝑆𝑧 , −|Ω̂|𝑆𝑧, −⟩⟨𝑆𝑧, −| 

which is more easily expressed as: 

Ω̂ = [
⟨𝑆𝑧, +|Ω̂|𝑆𝑧, +⟩ ⟨𝑆𝑧 , +|Ω̂|𝑆𝑧, −⟩

⟨𝑆𝑧, −|Ω̂|𝑆𝑧, +⟩ ⟨𝑆𝑧 , −|Ω̂|𝑆𝑧, −⟩
] 

Please explain in words why you evaluate the following as either 1 or 0: 

a. ⟨𝑆𝑧 , +|Ω̂|𝑆𝑧 , +⟩ b. ⟨𝑆𝑧, +|Ω̂|𝑆𝑧, −⟩ c. ⟨𝑆𝑧 , −|Ω̂|𝑆𝑧 , +⟩ d. ⟨𝑆𝑧, −|Ω̂|𝑆𝑧, −⟩ 

Hint: You already know the answer from question 3, but here you have to explain in 

words what these matrix elements mean. For example, let’s examine the second term 

and simplify the notation a bit:  |+⟩⟨+|Ω̂|−⟩⟨−|; here, Sz- polarized Ag atoms are input 

and Sz+ Ag atoms are the output. Is it possible for the Stern Gerlach device to do this? 

Etc. 

Answer: a. The Stern-Gerlach apparatus can easily convert |𝑆𝑧, +⟩ to |𝑆𝑧, +⟩, since that 

isn’t a conversion at all!1 b. This is 0 because there is no positive Sz+ component in the 

Sz- state. Both c., d. are 0 because the device can’t output Sz- polarized Ag atoms. 



5) Let’s redo the question one last time. It turns out the Stern-Gerlach machine in 

question 3 is a manifestation of the Sz+ projection operator: Ω̂ = |𝑆𝑧, +⟩⟨𝑆𝑧, +|. Knowing 

this, can you re-work question 4 entirely with Dirac Notation: 

 a. ⟨𝑆𝑧, +|Ω̂|𝑆𝑧, +⟩ b. ⟨𝑆𝑧, +|Ω̂|𝑆𝑧, −⟩ c. ⟨𝑆𝑧 , −|Ω̂|𝑆𝑧 , +⟩ d. ⟨𝑆𝑧, −|Ω̂|𝑆𝑧, −⟩ 

to show that Ω̂ = [
1 0
0 0

]? 

Hint: ⟨𝑆𝑧 , +|𝑆𝑧, +⟩ = 1, ⟨𝑆𝑧 , −|𝑆𝑧, +⟩ = 0, ⟨𝑆𝑧 , +|𝑆𝑧, −⟩ = 0, ⟨𝑆𝑧 , −|𝑆𝑧, −⟩ = 1 

Answer: 

a. ⟨𝑆𝑧 , +|Ω̂|𝑆𝑧 , +⟩ = ⟨𝑆𝑧, +|𝑆𝑧 , +⟩⟨𝑆𝑧, +|𝑆𝑧, +⟩ = 1 ∙ 1 = 1  

b. ⟨𝑆𝑧, +|Ω̂|𝑆𝑧, −⟩ = ⟨𝑆𝑧 , +|𝑆𝑧, +⟩⟨𝑆𝑧, +|𝑆𝑧, −⟩ = 1 ∙ 0 = 0  

c. ⟨𝑆𝑧 , −|Ω̂|𝑆𝑧 , +⟩ = ⟨𝑆𝑧, −|𝑆𝑧 , +⟩⟨𝑆𝑧, +|𝑆𝑧, +⟩ = 0 ∙ 1 = 0  

d. ⟨𝑆𝑧, −|Ω̂|𝑆𝑧, −⟩ = ⟨𝑆𝑧 , −|𝑆𝑧, +⟩⟨𝑆𝑧, +|𝑆𝑧, −⟩ = 0 ∙ 0 = 0 

6) Let’s call the previous projection operator Ω̂𝑆𝑧+, and if you had done the same 

question with a device that allowed the Sz- polarization to pass you would have derived: 

Ω̂𝑆𝑧− = [
0 0
0 1

] 

So, what would happen if you put the two Stern-Gerlach devices side-by-side as shown 

here: 

 

a. What would the output of such a device be, no matter what type of polarization is 

source input?  

b. Use the matrix representation of Ω̂𝑆𝑧+ and Ω̂𝑆𝑧− to show that your answer to pt. a is 

consistent with: Ω̂𝑡𝑜𝑡𝑎𝑙 = Ω̂𝑆𝑧−Ω̂𝑆𝑧+ 

c. Now redo the problem once more using Ω̂𝑆𝑧+ = |𝑆𝑧, +⟩⟨𝑆𝑧, +| and Ω̂𝑆𝑧− = |𝑆𝑧 , −⟩⟨𝑆𝑧, −| 

to find  Ω̂𝑡𝑜𝑡𝑎𝑙. 

Answer: a. The SG device wouldn’t have anything come out of it, it’s basically a beam 

block. 



b.  Ω̂𝑡𝑜𝑡𝑎𝑙 = Ω̂𝑆𝑧−Ω̂𝑆𝑧+ = [
0 0
0 1

] [
1 0
0 0

] = [
0 0
0 0

] 

Everything is 0, yes this makes sense.  

c. Ω̂𝑡𝑜𝑡𝑎𝑙 = Ω̂𝑆𝑧−Ω̂𝑆𝑧+ = |𝑆𝑧, +⟩⟨𝑆𝑧, +|𝑆𝑧, −⟩⟨𝑆𝑧, −|=0 because ⟨𝑆𝑧 , +|𝑆𝑧, −⟩ = 0.  

7) Imagine that we have the following Stern-Gerlach experiment: 

 

a. The first device is Ω̂𝑆𝑥+ = |𝑆𝑥, +⟩⟨𝑆𝑥, +|, the projection operator into the positive x-

polarized state. Using Dirac notation for the operator: 

Ω̂𝑆𝑥+ = ∑ ∑ |𝑖⟩⟨𝑖|Ω̂𝑆𝑥+|𝑗⟩⟨𝑗|

𝑆𝑧,−

𝑗=𝑆𝑧,+

𝑆𝑧,−

𝑖=𝑆𝑧,+

 

can you write out the matrix representation in the Sz basis set?  

Hint: |𝑆𝑥, +⟩ =
1

√2
|𝑆𝑧, +⟩ +

1

√2
|𝑆𝑧 , −⟩, and  Ω̂𝑆𝑥+ = [

⟨𝑆𝑧 , +|Ω̂𝑆𝑥+|𝑆𝑧, +⟩ ⟨𝑆𝑧 , +|Ω̂𝑆𝑥+|𝑆𝑧, −⟩

⟨𝑆𝑧 , −|Ω̂𝑆𝑥+|𝑆𝑧, +⟩ ⟨𝑆𝑧 , −|Ω̂𝑆𝑥+|𝑆𝑧, −⟩
] 

b. Now, if you had Sz- polarized Ag atoms going into the Sz+ Stern-Gerlach machine, 

there would of course be no output. However, if you were to do the same with the above 

machine (an Sx+ polarizer followed by a Sz+ polarizer, all of which can be represented 

as Ω̂𝑡𝑜𝑡𝑎𝑙 = Ω̂𝑆𝑧+Ω̂𝑆𝑥+) would there still be no output? Please use the matrix 

representation of these operators and |𝑆𝑧, −⟩ = [
0
1

] to solve the problem: Ω̂𝑆𝑧+Ω̂𝑆𝑥+|𝑆𝑧, −⟩ 

Answer: a. If you evaluate the matrix elements you find: 

⟨𝑆𝑧 , +|Ω̂𝑆𝑥+|𝑆𝑧, +⟩ = ⟨𝑆𝑧, +| {
1

√2
|𝑆𝑧, +⟩ +

1

√2
|𝑆𝑧, −⟩} {

1

√2
⟨𝑆𝑧 , +| +

1

√2
⟨𝑆𝑧 , −|} |𝑆𝑧, +⟩ =

1

2
 

Once you run through them all you find that Ω̂𝑆𝑥+ =
1

2
[
1 1
1 1

].  

b. The result of matrix multiplication is: 

 [
1 0
0 0

]
1

2
[
1 1
1 1

] =
1

2
[
1 1
0 0

]. If you input Sz- polarized Ag atoms, you get some Sz+ 

output: 



1

2
[
1 1
0 0

] [
0
1

] =
1

2
[
1
0

] 

8) Using the following descriptors:  |𝑆𝑦, +⟩ =
1

√2
| +⟩ +

𝑖

√2
| −⟩ and |𝑆𝑦, −⟩ =

1

√2
| +⟩ −

𝑖

√2
| −⟩ 

can you demonstrate that 𝑆̂𝑦 =
ℏ

2
{−𝑖 ∙ | +⟩⟨−| + 𝑖 ∙ | −⟩⟨+|}? 

Hint: recall how to use complex conjugates when dealing with kets vs. bras. 

Answer: Using the convention: 𝑆̂𝑦 =
ℏ

2
|𝑆𝑦, +⟩⟨𝑆𝑦, +| −

ℏ

2
|𝑆𝑦, −⟩⟨𝑆𝑦, −| 

Next you plug in the definitions above: 

𝑆̂𝑦 =
ℏ

2
{(

1

√2
| +⟩ +

𝑖

√2
| −⟩ ) (

1

√2
⟨+| −

𝑖

√2
⟨−|) − (

1

√2
| +⟩ −

𝑖

√2
| −⟩ ) (

1

√2
⟨+| +

𝑖

√2
⟨−|)} 

Now FOIL out the insides: 

ℏ

2
{(

1

2
| +⟩⟨+| +

𝑖

2
| −⟩⟨+| −

𝑖

2
| +⟩⟨−| +

1

2
| −⟩⟨−| )

− (
1

2
| +⟩⟨+| +

𝑖

2
| +⟩⟨−| −

𝑖

√2
| −⟩⟨+| +

1

2
| −⟩⟨−| )} 

You can see that several factors cancel out: 

ℏ

2
{(

1

2
| +⟩⟨+| −

1

2
| +⟩⟨+|) + (

𝑖

2
| −⟩⟨+| +

𝑖

2
| −⟩⟨+|) − (

𝑖

2
| +⟩⟨−| −

𝑖

2
| +⟩⟨−|)

+ (
1

2
| −⟩⟨−| −

1

2
| −⟩⟨−|)} 

Which leaves 𝑆̂𝑦 =
ℏ

2
{𝑖| −⟩⟨+| − 𝑖| +⟩⟨−|} 

9) For this question we will use a matrix representation to demonstrate:  

[𝑆̂𝑖, 𝑆̂𝑗] = 𝑖ℏ ∙ ℇ𝑖,𝑗,𝑘 ∙ 𝑆̂𝑘 

You need to know that: 𝑆̂𝑥 =
ℏ

2
[
0 1
1 0

]  𝑆̂𝑦 =
ℏ

2
[
0 −𝑖
𝑖 0

], and 𝑆̂𝑧 =
ℏ

2
[
1 0
0 −1

] 

Please use the following approach:  

a) Demonstrate 𝑆̂𝑥𝑆̂𝑦 =
𝑖ℏ

2
𝑆̂𝑧  

b) Demonstrate 𝑆̂𝑦𝑆̂𝑥 = −
𝑖ℏ

2
𝑆̂𝑧 and thus [𝑆̂𝑥, 𝑆̂𝑦] = 𝑖ℏ ∙ 𝑆̂𝑧 

c) Now use the same approach to show: [𝑆̂𝑥, 𝑆̂𝑧] =  −𝑖ℏ ∙ 𝑆̂𝑦 

Answer: a) 𝑆̂𝑥𝑆̂𝑦 =
ℏ2

4
[
0 1
1 0

] [
0 −𝑖
𝑖 0

] =
ℏ2

4
[

𝑖 0
0 −𝑖

]   



Some factoring yields 𝑆̂𝑥𝑆̂𝑦 =
𝑖ℏ

2

ℏ

2
[
1 0
0 −1

] =
𝑖ℏ

2
𝑆̂𝑧 

b) 𝑆̂𝑦𝑆̂𝑥 =
ℏ2

4
[
0 −𝑖
𝑖 0

] [
0 1
1 0

] =
ℏ2

4
[
−𝑖 0
0 𝑖

] = −
𝑖ℏ

2

ℏ

2
[
1 0
0 −1

] = −
𝑖ℏ

2
𝑆̂𝑧 

Thus, 𝑆̂𝑥𝑆̂𝑦 − 𝑆̂𝑦𝑆̂𝑥 =
𝑖ℏ

2
𝑆̂𝑧 − (−

𝑖ℏ

2
𝑆̂𝑧) = 𝑖ℏ ∙ 𝑆̂𝑧 

c) First, [𝑆̂𝑥, 𝑆̂𝑧] = 𝑆̂𝑥𝑆̂𝑧 − 𝑆̂𝑧𝑆̂𝑥. We will evaluate 𝑆̂𝑥𝑆̂𝑧 first: 

𝑆̂𝑥𝑆̂𝑧 =
ℏ2

4
[
0 1
1 0

] [
1 0
0 −1

] =
ℏ2

4
[
0 −1
1 0

] 

This is a bit tricky- you make progress by factoring out an “i”: 𝑆̂𝑥𝑆̂𝑧 =
ℏ2

4
𝑖 [

0 𝑖
−𝑖 0

]. Now try 

factoring out a “-i”: 𝑆̂𝑥𝑆̂𝑧 =
ℏ2

4
(−𝑖) [

0 −𝑖
𝑖 0

] and upon further rearrangement you find:  

𝑆̂𝑥𝑆̂𝑧 = −
𝑖ℏ

2

ℏ

2
[
0 −𝑖
𝑖 0

] = −
𝑖ℏ

2
𝑆̂𝑦 

Next: 

𝑆̂𝑧𝑆̂𝑥 =
ℏ2

4
[
1 0
0 −1

] [
0 1
1 0

] =
ℏ2

4
[

0 1
−1 0

] 

Like before you factor out an “i” to find: 

𝑆̂𝑧𝑆̂𝑥 = 𝑖
ℏ2

4
[
0 −𝑖
𝑖 0

] which we see is 𝑆̂𝑧𝑆̂𝑥 =
𝑖ℏ

2

ℏ

2
[
0 −𝑖
𝑖 0

] =
𝑖ℏ

2
𝑆̂𝑦 

Consequently, [𝑆̂𝑥, 𝑆̂𝑧] = 𝑆̂𝑥𝑆̂𝑧 − 𝑆̂𝑧𝑆̂𝑥 =
−𝑖ℏ

2
𝑆̂𝑦 −

𝑖ℏ

2
𝑆̂𝑦 = −𝑖ℏ𝑆̂𝑦 

10) Now let’s work with some anti-commutators: 

a) Please show that {𝑆̂𝑥, 𝑆̂𝑥} = 𝑆̂𝑥𝑆̂𝑥 + 𝑆̂𝑥𝑆̂𝑥 =
ℏ2

2
 using the matrix representation. 

b) And that {𝑆̂𝑦, 𝑆̂𝑧} = 𝑆̂𝑦𝑆̂𝑧 + 𝑆̂𝑧𝑆̂𝑦 = 0. 

Answer: a) 𝑆̂𝑥𝑆̂𝑥 =
ℏ2

4
[
0 1
1 0

] [
0 1
1 0

] =
ℏ2

4
[
1 0
0 1

].Hence 𝑆̂𝑥𝑆̂𝑥 + 𝑆̂𝑥𝑆̂𝑥 = 2
ℏ2

4
𝑰 =

ℏ2

2
, where 𝑰 

is the identity matrix. 

b) 𝑆̂𝑦𝑆̂𝑧 =
ℏ2

4
[
0 −𝑖
𝑖 0

] [
1 0
0 −1

] =
ℏ2

4
[
0 𝑖
𝑖 0

]. Likewise 𝑆̂𝑧𝑆̂𝑦 =
ℏ2

4
[
1 0
0 −1

] [
0 −𝑖
𝑖 0

] =

ℏ2

4
[

0 −𝑖
−𝑖 0

]. 

It is clear that the two matrices are the negative of eachother, so when added you get 0. 


