
Chem 542 Exam 1 

1) Here is an interesting fact about Dirac delta functions- they are eigenfunctions of the 

position operator �̂�. Can you show that 𝛿(𝑥 − 𝑎) is the eigenfunction of �̂� with an 

eigenvalue of 𝑎? Hint: This question is stupid simple- I just want to make sure you know 

what an eigenfunction is. Just look at the cheat sheet! 

Answer: There is an identity in the cheat sheet: 𝑓(𝑥)𝛿(𝑥 − 𝑎) =  𝑓(𝑎)𝛿(𝑥 − 𝑎)  

�̂�𝛿(𝑥 − 𝑎) = 𝑎𝛿(𝑥 − 𝑎) 

You should note that this is of the proper form Ω̂Φ = 𝜔Φ 

2) Shown here is the %transmission through a positive double delta potential; one is at 

x=0 and the other at x=L. The one on the left is for a trap of L = 1 nm while the right 

hand one has L = 2 nm. The reason that there is 100% transmission is due to the 

formation of particle in a box wavefunctions between the traps. Each T=100% 

resonance can be associated with a higher quantum number box state. 

 

a. Shown here are the energies of the 

T=100% resonances for both the L= 1 nm and 

L = 2 nm trap potentials. Can you explain why 

the L = 2 nm trap resonances are at energies 

that are ~1/4 as much as for L=1 nm? 

b. The quadratic fits to the data are shown by 

the lines though the datapoints (~𝑓𝑖𝑡 ∝

𝑟𝑒𝑠𝑜𝑛𝑎𝑛𝑐𝑒 #2). Can you state why the 

energies for resonances are separated 

quadratically in energy? 

 

Answer: This is all a manifestation of particle in a box energy. a. The particle in a box 

energy is proportional to 1/L2. b. The particle in a box energy is proportional to quantum 

number squared, i.e. n2.  



3) Let’s say that we need to change a Hamiltonian from a set of x and y coordinates to 

spin up  and down , where: 𝑥2 = 𝛼 + 𝛽 and 𝑦2 = 𝛼 − 𝑖 ∙ 𝛽 

For this problem, please show that 
𝜕

𝜕𝑥
= 2√𝛼 + 𝛽 (

𝜕

𝜕𝛼
+

𝜕

𝜕𝛽
); no need to do 

𝜕

𝜕𝑦
 since its so 

similar.  

Answer: The proper form is: 

𝜕

𝜕𝑥
=

𝜕𝛼

𝜕𝑥

𝜕

𝜕𝛼
+

𝜕𝛽

𝜕𝑥

𝜕

𝜕𝛽
 

Next, we just do the two derivatives: 

𝜕𝛼

𝜕𝑥
=

𝜕(𝑥2 − 𝛽)

𝜕𝑥
= 2𝑥 = 2√𝛼 + 𝛽 

Likewise 
𝜕𝛽

𝜕𝑥
= 2√𝛼 + 𝛽. Therefore the answer is   

𝜕

𝜕𝑥
= 2√𝛼 + 𝛽 (

𝜕

𝜕𝛼
+

𝜕

𝜕𝛽
) 

 

4) a. In your current homework on the He atom’s atomic structure, why is it ok to convert 

the Coulomb integral of 𝑟2 from 0→∞ (on the left) into two separate ones shown on the 

right, the first from 0→𝑟1 and the second from 𝑟1→∞? 

𝑒2

4𝜋𝜖0
∫ ∫ ~

1

𝑟>
 𝜕𝑟2𝜕𝑟1

𝑟2=∞

𝑟2=0

𝑟1=∞

𝑟1=0

=
𝑒2

4𝜋𝜖0
∫ ∫ ~

1

𝑟>
 𝜕𝑟2𝜕𝑟1

𝒓𝟐=𝒓𝟏

𝒓𝟐=𝟎

𝑟1=∞

𝑟1=0

+
𝑒2

4𝜋𝜖0
∫ ∫ ~

1

𝑟>
 𝜕𝑟2𝜕𝑟1

𝒓𝟐=∞

𝒓𝟐=𝒓𝟏

𝑟1=∞

𝑟1=0

 

b. Now why can I assign 𝑟> to 𝑟1 in the first term? Hint, 𝑟> represents either 𝑟1 or 𝑟2 

depending on which is greater than the other. 

Answer: a. Integrals are areas, and areas add. 

b. Since 𝑟2 is always less than 𝑟1 according to the limits of integration. 

5) Some theory research groups develop new basis functions for multielectron atoms 

using sums of Gaussian functions (at least three) with different weighing coefficients 

(𝐶𝑛) and distance dependences (𝑎𝑛) as: 

𝜓(𝑟) = 𝐶1 ∙ 𝑒−𝑟2 𝑎1⁄ + 𝐶2 ∙ 𝑒−𝑟2 𝑎2⁄ + 𝐶3 ∙ 𝑒−𝑟2 𝑎3⁄  

Why are they doing so? And how would you know what makes a good set of 𝐶𝑛 and 𝑎𝑛? 

Answer: The fact that the atom has multiple electrons means that we don’t every know 

the correct function, and any guess we make won’t be correct. As such, the energy of 

the wavefunction will always be too high, so a good set of 𝐶𝑛 and 𝑎𝑛 will minimize the 

calculated energy. 



6) The following Hamiltonian was derived to describe my cat Zoe. There 

are two variables, 𝑥 and 𝜃.  

�̂�(𝑥, 𝜃) = ℏ
𝜕

𝜕𝑥
−

𝜔

𝑥
∙

𝜕

𝜕𝜃
 

a. The expression doesn’t seem separable due to the 2nd term that has both 𝑥 and 𝜃 in 

it, but actually I think it is separable. Can you study it and see if: 𝜓𝑐𝑎𝑡(𝑥, 𝜃) = 𝜓(𝑥)𝜓(𝜃)? 

b. What variable controls the energy (is it 𝑥 or 𝜃)? 

c. If 
𝜕𝜓(𝜃)

𝜕𝜃
= 0, can you show that 𝜓(𝑥) = 𝑒

𝐸

ℏ
∙𝑥

 is a reasonable 𝑥 eigenfunction? 

 

Answer: a. First act on the right and divide by the left: 

1

𝜓𝑐𝑎𝑡
�̂�𝜓𝑐𝑎𝑡 =

1

𝜓𝑐𝑎𝑡
𝐸𝜓𝑐𝑎𝑡 = 𝐸 

Let’s work on 
1

𝜓𝑐𝑎𝑡
�̂�𝜓𝑐𝑎𝑡:  

1

𝜓(𝑥)𝜓(𝜃)
(ℏ

𝜕

𝜕𝑥
−

𝜔

𝑥
∙

𝜕

𝜕𝜃
) 𝜓(𝑥)𝜓(𝜃) =

ℏ

𝜓(𝑥)

𝜕𝜓(𝑥)

𝜕𝑥
−

𝜔

𝑥 ∙ 𝜓(𝜃)

𝜕𝜓(𝜃)

𝜕𝜃
 

To show separability multiply everything by 𝑥, and you have it: 

ℏ (
𝑥

𝜓(𝑥)
)

𝜕𝜓(𝑥)

𝜕𝑥
−

𝜔

𝜓(𝜃)
∙

𝜕𝜓(𝜃)

𝜕𝜃
= 𝑥 ∙ 𝐸 

b. If you do a bit more algebra its perhaps easier to see how there are two “mini” 

Schrodinger equations, with the energy belonging to the 𝑥 one: 

ℏ (
𝑥

𝜓(𝑥)
)

𝜕𝜓(𝑥)

𝜕𝑥
− 𝑥 ∙ 𝐸 =

𝜔

𝜓(𝜃)
∙

𝜕𝜓(𝜃)

𝜕𝜃
 

c. If 
𝜕𝜓(𝜃)

𝜕𝜃
= 0 then (

ℏ

𝜓(𝑥)
)

𝜕𝜓(𝑥)

𝜕𝑥
= 𝐸. So if we insert: 𝜓(𝑥) = 𝑒

𝐸

ℏ
∙𝑥 then:  

ℏ (
1

𝑒−
𝐸
ℏ

∙𝑥
)

𝜕𝑒
𝐸
ℏ

∙𝑥

𝜕𝑥
=

𝐸

ℏ
∙ ℏ (

𝑒−
𝐸
ℏ

∙𝑥

𝑒−
𝐸
ℏ

∙𝑥
) = 𝐸 

which satisfies the separated diffi-eq.  

  



Equations 

Constants: h = 6.626 × 10−34kg ⋅ m2 ⋅ s−1     ℏ =
ℎ

2𝜋
= 1.055 × 10−34kg ⋅ m2 ⋅ s−1      

c = 3 × 108 m/s    kB = 1.38 × 10−23J/K  electron mass: 9.11 × 10−31kg  

proton mass: 1.67 × 10−27kg   

Imaginary identities:  |ψ|2 = ψ∗ψ     i1 =−  1i2 −=        sin(k ∙ x) =
eik∙x−e−ik∙x

2i
         

cos(k ∙ x) =
eik∙x+e−ik∙x

2
            eiπ⋅0 = 1  eiπ/2 = I eiπ = −1  eiπ⋅(3/2) = −i  

eiπ⋅2 = 1 (eiπ)
∗

= e−iπ  sin(a ∙ x)∗ = sin(a ∙ x) 

Calc IDs: 2D: 𝜕τ = ∂r ∂ϕ 3D: 𝜕τ = r2sin(𝜃) ∙ ∂r ∙ ∂ϕ ∙ ∂θ      ∫ ∫ ∫ r2sin(𝜃) ∙ ∂r ∙ ∂ϕ ∙ ∂θ
∞

0

2𝜋

0

𝜋

0
 

∂

∂x
ea∙x = a ∙ ea∙x     

∂

∂x
xa = a ∙ xa−1       

∂

∂θ
cos(θ) = − sin(θ)    

∂

∂θ
sin(θ) = cos(θ)     

∂

∂θ
[sin(θ) cos(θ)] = 1 − 2 sin2(θ)        

∂

∂θ
sin2(θ) = 2 sin(θ) cos(θ) 

∂

∂θ
cos2(θ) = −2 sin(θ) cos(θ) 

Chain Rule: 
𝜕

𝜕𝑥
=

𝜕𝑦

𝜕𝑥

𝜕

𝜕𝑦
 Product Rule: 

𝜕(𝑢𝑣)

𝜕𝑥
= 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑥
 

Delta function: 𝑓(𝑥)𝛿(𝑥 − 𝑎) =  𝑓(𝑎)𝛿(𝑥 − 𝑎) 

General Equations: momentum: m∙v Energy: h = hc        de Broglie wavelength: λ =
h

p
 

Ω̂ψ = ωψ |ψ|2 = ψ∗ψ     Free wave (flat V): ψ = A ∙ eikx∙x + B ∙ e−ikx∙x     

Separability: 
1

ψ(𝑟,𝜃,𝜙)
Ω̂ψ(𝑟, 𝜃, 𝜙) = {𝑟 𝑡𝑒𝑟𝑚𝑠} + {𝜃 𝑡𝑒𝑟𝑚𝑠} + {𝜙 𝑡𝑒𝑟𝑚𝑠} = 0 

Operators: Hamiltonian: 
−ℏ2

2m
∇2 + V̂    position: x̂ = x  momentum: p̂x =

ℏ

i

∂

∂x
     

kinetic energy:  
p̂x

2

2m
=

−ℏ2

2m

∂2

∂x2   Hamiltonian: 
−ℏ2

2m

∂2

∂x2 + V(x)  Free wave: ψ = A ∙ eikx + B ∙ e−ikx     

Expectation value: ⟨Ω̂⟩ = ∫ ψ∗ ⋅ Ω̂ ⋅
all limits

ψ ∙ 𝜕x = ω 

Orthonormality: ∫ ψi
∗ ⋅

all limits
ψj ∙ ∂τ = 0 if i≠j   ∫ ψi

∗ ⋅
all limits

ψj ∙ ∂τ = 1 if i=j 

Particle in a box wavefunction: ψ = √
2

𝐿
𝑠𝑖𝑛 (

𝑛𝜋𝑥

𝐿
), n (quantum number) = 1,2,3,…   

Particle in a box energy: 
ℎ2𝑛2

8𝑚𝐿2, n=quantum number, m=mass, L is length of the box. 


