
Chem 542 Problem Set 4 

1. For this problem we will work a simple integral identity that you need for question 5. 

Can you show that the left integral is the same as on the right? 

∫ { ∫ 𝑓(𝑥, 𝑦)𝜕𝑥

𝑥=𝑦

𝑥=0

} 𝜕𝑦

𝑦=𝑎

𝑦=0

= ∫ { ∫ 𝑓(𝑥, 𝑦)𝜕𝑦

𝑦=𝑎

𝑦=𝑥

} 𝜕𝑥

𝑥=𝑎

𝑥=0

 

To make it easy just use a simple function such as 𝑓(𝑥, 𝑦) = 1. 

Answer: First solve the left-hand one: 

∫ { ∫ 𝑓(𝑥, 𝑦)𝜕𝑥

𝑥=𝑦

𝑥=0

} 𝜕𝑦

𝑦=𝑎

𝑦=0

= ∫ { ∫ 𝜕𝑥

𝑥=𝑦

𝑥=0

} 𝜕𝑦

𝑦=𝑎

𝑦=0

= ∫ {𝑥|0
𝑦

}𝜕𝑦

𝑦=𝑎

𝑦=0

= ∫ 𝑦 ∙ 𝜕𝑦 =
𝑎2

2

𝑦=𝑎

𝑦=0

 

Likewise: 

∫ { ∫ 𝑓(𝑥, 𝑦)𝜕𝑦

𝑦=𝑎

𝑦=𝑥

} 𝜕𝑥

𝑥=𝑎

𝑥=0

= ∫ {𝑦|𝑥
𝑎}𝜕𝑥

𝑥=𝑎

𝑥=0

= ∫ (𝑎 − 𝑥)𝜕𝑥

𝑥=𝑎

𝑥=0

= 𝑎𝑥 −
𝑥2

2
|

0

𝑎

=
𝑎2

2
 

 

Atomic Structure: Optimizing the Wavefunction of He 

2. For this problem we will examine the electronic structure of the He atom in the 1s2 

configuration. The hydrogenic wavefunction for the 1s state is: 

𝜓1𝑠(𝑟, 𝜃, 𝜙) = 𝑁 ∙ 𝑅(𝑟) ∙ 𝑌0,0(𝜃) ∙ 𝑌0,0(𝜙) = 2 ∙ (
𝑍3

𝑎0
3)

1
2

𝑒−𝑍∙𝑟 𝑎0⁄ ∙
1

2
∙

1

√𝜋
 

where Z is the nuclear charge (2 for He), and a0 is a Bohr (5.29×10-11 m).  

a. We need to check to see if it is normalized properly. I can think of two ways to 

demonstrate, but I am afraid one of them is incorrect! Please use Mathematica to 

determine which of the two expressions below is correct. 

(1) 𝑁2 ∫ ∫ ∫ 𝜓1𝑠
∗𝜓1𝑠 ∙ 𝜕𝜙 ∙ 𝜕𝜃 ∙ 𝜕𝑟

𝜙=2𝜋

𝜙=0

𝜃=𝜋

𝜃=0

𝑟=∞

𝑟=0
 

or 

(2) 𝑁2 ∫ ∫ ∫ 𝜓1𝑠
∗𝜓1𝑠 ∙ 𝜕𝜙 ∙ 𝑠𝑖𝑛(𝜃)𝜕𝜃 ∙ 𝑟2𝜕𝑟

𝜙=2𝜋

𝜙=0

𝜃=𝜋

𝜃=0

𝑟=∞

𝑟=0
 

b. What does the factor 𝑟2 ∙ 𝑠𝑖𝑛(𝜃) represent and why is it necessary? 

Answer: a. Plug this into Mathematica and show that this is normalized. 



∫
1

√𝜋

∗ 1

√𝜋
∙ 𝜕𝜙 =

1

𝜋

𝜙=2𝜋

𝜙=0

(2𝜋 − 0) = 2 

∫
1

2

∗ 1

2
∙ 𝜕𝜃 =

1

4

𝜃=𝜋

𝜃=0

(𝜋 − 0) =
𝜋

4
 

and  

𝑁2 ∫ 𝜓(𝑟)∗𝜓(𝑟)

∞

𝑟1=0

∙ 𝜕𝑟 = 4
𝑍3

𝑎0
3 ∫ 𝑒−2𝑍∙𝑟 𝑎0⁄

∞

𝑟1=0

∙ 𝜕𝑟 = 4
𝑍3

𝑎0
3 2

𝑍2

𝑎0
2 

The whole thing is 2 ∙
𝜋

4
∙ 4

𝑍3

𝑎0
3 2

𝑍2

𝑎0
2 = 4𝜋

𝑍5

𝑎0
5. This isn’t 1, so this isn’t correct. 

As for 2, we repeat the analysis: 

∫
1

√𝜋

∗ 1

√𝜋
∙ 𝜕𝜙 =

1

𝜋

𝜙=2𝜋

𝜙=0

(2𝜋 − 0) = 2 

∫
1

2

∗ 1

2
∙ 𝑠𝑖𝑛(𝜃) ∙ 𝜕𝜃 = −

1

4

𝜃=𝜋

𝜃=0

(𝑐𝑜𝑠(𝜋) − 𝑐𝑜𝑠(0)) = −
1

4
∙ −2 =

1

2
 

and  

𝑁2 ∫ 𝜓(𝑟)∗𝜓(𝑟)

∞

𝑟1=0

∙ 𝜕𝑟 = 4
𝑍3

𝑎0
3 ∫ 𝑒−2𝑍∙𝑟 𝑎0⁄

∞

𝑟1=0

∙ 𝑟2𝜕𝑟 = 1 

The whole thing is 2 ∙
1

2
∙ 1 = 1. Hence the 2nd expression is the correct one. 

b. That part is the Jacobian and is necessary for proper volume integration in spherical 

coordinates. 

 

3. Now let’s calculate the kinetic energy of the He 1s2 state. First you must note that the 

wavefunction is:  

𝜓 = {
𝜓1(𝑟1, 𝜃1, 𝜙1) ∙ 𝜓2(𝑟2, 𝜃2, 𝜙2) + 𝜓1(𝑟2, 𝜃2, 𝜙2) ∙ 𝜓2(𝑟1, 𝜃1, 𝜙1)

√2
} {

𝛼(1)𝛽(2) − 𝛼(2)𝛽(1)

√2
} 

Since both 𝜓1 and 𝜓2 are 1s orbitals, the wavefunction simplifies to: 

𝜓 = {𝜓(𝑟1, 𝜃1, 𝜙1) ∙ 𝜓(𝑟2, 𝜃2, 𝜙2)}{𝛼(1)𝛽(2) − 𝛼(2)𝛽(1)} 



Now when you apply this to the Hamiltonian: 

∫ 𝜓∗�̂�𝜓 ∙ 𝜕𝜏 = ∫ 𝜓∗ {
−ℏ2

2𝑚
∇1

2 +
−ℏ2

2𝑚
∇1

2 −
𝑍𝑒2

4𝜋𝜖0𝑟1
−

𝑍𝑒2

4𝜋𝜖0𝑟2
+

𝑒2

4𝜋𝜖0|𝑟1 − 𝑟2|
} 𝜓 ∙ 𝜕𝜏 

it is a bloody mess (looks like 20 terms!). However, the spin integrals:  

∫ 𝛼(1)𝛽(1) = 0,   ∫ 𝛼(1)𝛼(1) = 1,   ∫ 𝛽(1)𝛽(1) = 1 

(likewise for electron 2) cause most of the terms to vanish. As a result, I won’t make you 

work through all that and will give you all the non-zero integrals to work on. 

Given the above we are now ready to start calculating the kinetic energy. First, I will let 

you know that the angular parts integrate to 1 since there is no rotational energy for 1s 

electrons. This leaves just two radial equations for the two electrons: 

−ℏ2

2𝑚
∫ 𝜓(𝑟1)∗

1

𝑟1
2

𝜕

𝜕𝑟1
𝑟1

2
𝜕

𝜕𝑟1
𝜓(𝑟1)

∞

𝑟1=0

∙ 𝑟1
2𝜕𝑟1 +

−ℏ2

2𝑚
∫ 𝜓(𝑟2)∗

1

𝑟2
2

𝜕

𝜕𝑟2
𝑟2

2
𝜕

𝜕𝑟2
𝜓(𝑟2)

∞

𝑟2=0

∙ 𝑟2
2𝜕𝑟2 

Using 𝜓(𝑟) = 2 (
𝑍3

𝑎0
3)

1

2
𝑒−𝑍∙𝑟 𝑎0⁄ , can you calculate the kinetic energy? Hint: the integrals 

are equal so just calculate one then double it. 

Answer: Using Mathematica: 

−ℏ2

2𝑚
4

𝑍3

𝑎0
3 ∫ 𝜓(𝑟1)∗

1

𝑟2

𝜕

𝜕𝑟
𝑟2

𝜕

𝜕𝑟
𝜓(𝑟1)

∞

𝑟1=0

∙ 𝑟1
2𝜕𝑟1 

The result from Mathematica is 
−𝑍2

𝑎0
2 , giving us a total of 

−ℏ2

2𝑚

−𝑍2

𝑎0
2 = 𝑍2 ℏ2

2𝑚𝑎0
2. Since there are 

two electrons the total kinetic energy is 2𝑍2 ℏ2

2𝑚𝑎0
2.  

4. Now let’s evaluate the (negative) Coulomb energy of each electron with the single 

nucleus. Since helium has two positive charges the Coulomb term has a 2 in it, 
−2𝑒2

4𝜋𝜖0
 as 

below: 

−2𝑒2

4𝜋𝜖0
∫ 𝜓(𝑟1)∗

1

𝑟1
𝜓(𝑟1)

∞

𝑟1=0

∙ 𝑟1
2𝜕𝑟1 +

−2𝑒2

4𝜋𝜖0
∫ 𝜓(𝑟2)∗

1

𝑟2
𝜓(𝑟2)

∞

𝑟1=0

∙ 𝑟2
2𝜕𝑟2 

Note each integral will of course be exactly the same, so just do one and then double it.  

Answer: The result from Mathematica is 
2𝑍

𝑎0
, giving us a total of 

−𝑒2

4𝜋𝜖0

2𝑍

𝑎0
= −2𝑍

𝑒2

4𝜋𝜖0𝑎0
. 

Since there are two electrons the total electron-nuclear energy is −4𝑍
𝑒2

4𝜋𝜖0𝑎0
.   



5. Now let’s try to solve the (positive) Coulomb interaction between two electrons of the 

helium atom. This part looks a bit different than the earlier ones due to the fact that the 

electrons are not separable, so the expectation value is: 

∫ ∫|𝜓(𝑟1)|2
𝑒2

4𝜋𝜖0|𝑟1 − 𝑟2|
|𝜓(𝑟2)|2 ∙ 𝜕𝜏1 ∙ 𝜕𝜏2 

The absolute value of the wavefunctions including the normalization constants are: 

|𝜓(𝑟1)|2 =
4𝑍3

𝑎0
3 𝑒−2𝑍∙𝑟1 𝑎0⁄ ∙ |𝑌0,0(𝜃1, 𝜙1)|

2
 and |𝜓(𝑟2)|2 =

4𝑍3

𝑎0
3 𝑒−2𝑍∙𝑟2 𝑎0⁄ ∙ |𝑌0,0(𝜃2, 𝜙2)|

2
 

Including this info, and integrating over all the dimensions yields: 

∫ ∫ |𝜓(𝑟1)|2
𝑒2

4𝜋𝜖0|𝑟1 − 𝑟2|
|𝜓(𝑟2)|2

∞

𝑟2=0

∙ 𝑟2
2𝜕𝑟2

∞

𝑟1=0

∙ 𝑟1
2𝜕𝑟1

∙ ∫ ∫ ∫ ∫ |𝑌0,0(𝜃1, 𝜙1)|
2

∙ |𝑌0,0(𝜃2, 𝜙2)|
2

2𝜋

𝜙2=0

𝜋

𝜃2=0

2𝜋

𝜙1=0

𝜋

𝜃1=0

𝑠𝑖𝑛(𝜃2)𝑠𝑖𝑛(𝜃1)𝜕𝜙2𝜕𝜃2𝜕𝜙1𝜕𝜃1 

Here, the angular parts are easy to solve since |𝑌0,0(𝜃, 𝜙)|
2

=
1

4𝜋
, and thus: 

∫ ∫ ∫ ∫ |𝑌0,0(𝜃1, 𝜙1)|
2

∙ |𝑌0,0(𝜃2, 𝜙2)|
2

2𝜋

𝜙2=0

𝜋

𝜃2=0

2𝜋

𝜙1=0

𝜋

𝜃1=0

𝑠𝑖𝑛(𝜃2)𝑠𝑖𝑛(𝜃1)𝜕𝜙2𝜕𝜃2𝜕𝜙1𝜕𝜃1 

=
1

16𝜋2
( ∫ ∫ 𝑠𝑖𝑛(𝜃1)𝜕𝜙1𝜕𝜃1

2𝜋

𝜙1=0

𝜋

𝜃1=0

) ∙ ( ∫ ∫ 𝑠𝑖𝑛(𝜃2)𝜕𝜙2𝜕𝜃2

2𝜋

𝜙2=0

𝜋

𝜃1=0

) =
1

16𝜋2
∙ 4𝜋 ∙ 4𝜋 = 1 

Of course, because the wavefunctions are normalized and the operator doesn’t have 

any angles in it! Now you are left with the radial integral: 

𝑒2

4𝜋𝜖0
∫ ∫ |𝜓(𝑟1)|2

1

|𝑟1 − 𝑟2|
|𝜓(𝑟2)|2

∞

𝑟2=0

∙ 𝑟2
2𝜕𝑟2

∞

𝑟1=0

∙ 𝑟1
2𝜕𝑟1 

…and this can’t be solved as it is written. Bummer! Regardless of our math ability, 

there must be a way to do this calculation! In fact, the resolution is to use the “addition 

theorem for Legendre polynomials” to replace the 
1

|𝑟1−𝑟2|
 operator as shown below: 

1

|𝑟1 − 𝑟2|
=

1

𝑟12
= ∑

𝑟12<
𝑙

𝑟12>
𝑙+1

∙
4𝜋

2𝑙 + 1
∑ 𝑌𝑙,𝑚(𝜃1, 𝜙1) ∙ 𝑌𝑙,𝑚(𝜃2, 𝜙2)∗

𝑙

𝑚=−𝑙

∞

𝑙=0

 

where 𝑟12< and 𝑟12>  have the following meaning: if 𝑟1 > 𝑟2 then 𝑟12> = 𝑟1 and likewise 

𝑟12< = 𝑟2. However, if 𝑟2 > 𝑟1, then 𝑟12> = 𝑟2 and 𝑟12< = 𝑟1.  Also, the addition theorem 



includes spherical harmonics, so we can’t just integrate those away anymore. To this 

end, we will deal with the spherical harmonics first:  

∑
4𝜋

2𝑙 + 1
∑ 𝑌𝑙,𝑚(𝜃1, 𝜙1) ∙ 𝑌𝑙,𝑚(𝜃2, 𝜙2)∗

𝑙

𝑚=−𝑙

∞

𝑙=0

 

 This expression is integrated within the angular part, which yields: 

∑
4𝜋

2𝑙 + 1

∞

𝑙=0

∑ ∫ ∫ ∫ ∫ |𝑌0,0(𝜃1, 𝜙1)|
2

∙ |𝑌0,0(𝜃2, 𝜙2)|
2

∙ 𝑌𝑙,𝑚(𝜃1, 𝜙1) ∙ 𝑌𝑙,𝑚(𝜃2, 𝜙2)∗

2𝜋

𝜙2=0

𝜋

𝜃2=0

2𝜋

𝜙1=0

𝜋

𝜃1=0

𝑙

𝑚=−𝑙

∙ 𝑠𝑖𝑛(𝜃1) ∙ 𝑠𝑖𝑛(𝜃2) ∙ 𝜕𝜙2𝜕𝜃2𝜕𝜙1𝜕𝜃1 

This divvies up into two integrals: 

∑
4𝜋

2𝑙 + 1

∞

𝑙=0

∑ ( ∫ ∫ 𝑌0,0(𝜃1, 𝜙1)∗𝑌0,0(𝜃1, 𝜙1)𝑌𝑙,𝑚(𝜃1, 𝜙1) ∙ 𝑠𝑖𝑛(𝜃1) ∙ 𝜕𝜙1𝜕𝜃1

2𝜋

𝜙1=0

𝜋

𝜃1=0

)

𝑙

𝑚=−𝑙

∙ ( ∫ ∫ 𝑌0,0(𝜃2, 𝜙2)∗𝑌0,0(𝜃2, 𝜙2)𝑌𝑙,𝑚(𝜃2, 𝜙2)∗

2𝜋

𝜙2=0

∙ 𝑠𝑖𝑛(𝜃2) ∙ 𝜕𝜙2𝜕𝜃2

𝜋

𝜃2=0

) 

To go about this, we can simplify the triple product of functions into two. However, in 

this problem there is a simple hack due to the fact that 𝑌0,0(𝜃1, 𝜙1) = 𝑌0,0(𝜃1, 𝜙1)∗ =
1

√4𝜋
. 

Specifically, we can simply factor out 𝑌0,0(𝜃1, 𝜙1) in the 1st integral and 𝑌0,0(𝜃2, 𝜙2)∗ in 

the 2nd leaving: 

∑
4𝜋

2𝑙 + 1

∞

𝑙=0

∑ (𝑌0,0(𝜃1, 𝜙1) ∫ ∫ 𝑌0,0(𝜃1, 𝜙1)∗ ∙ 𝑌𝑙,𝑚(𝜃1, 𝜙1) ∙ 𝑠𝑖𝑛(𝜃1) ∙ 𝜕𝜙1𝜕𝜃1

2𝜋

𝜙1=0

𝜋

𝜃1=0

)

𝑙

𝑚=−𝑙

∙ (𝑌0,0(𝜃2, 𝜙2)∗ ∫ ∫ 𝑌𝑙,𝑚(𝜃2, 𝜙2)∗ ∙ 𝑌0,0(𝜃2, 𝜙2)

2𝜋

𝜙2=0

∙ 𝑠𝑖𝑛(𝜃2) ∙ 𝜕𝜙2𝜕𝜃2

𝜋

𝜃2=0

) 

a. Given that the spherical harmonics are actually orthonormal wavefunctions, the 

following can be used: 

∫ ∫ 𝑌𝑙,𝑚
∗ ∙ 𝑌𝑙′,𝑚′𝑠𝑖𝑛(𝜃) ∙ 𝜕𝜙𝜕𝜃

2𝜋

𝜙=0

𝜋

𝜃=0

= 𝛿𝑙,𝑙′𝛿𝑚,𝑚′ 

where 𝛿 is the Kroneker delta function and has the following properties: 

𝛿𝑙,𝑙′ = 1 if 𝑙 = 𝑙′, 𝛿𝑙,𝑙′ = 0 if 𝑙 ≠ 𝑙′ 



Now, here is the question, can you explain why the whole thing above is just equal to 1? 

This is actually a very simple derivation that can mostly be explained in words. 

b. Now that the angular parts integrate to just 1, we are left with the radial part:  

𝑒2

4𝜋𝜖0
∫ ∫ |𝜓(𝑟1)|2

𝑟12<
𝑙

𝑟12>
𝑙+1

|𝜓(𝑟2)|2

𝑟2=∞

𝑟2=0

∙ 𝑟2
2𝜕𝑟2

𝑟1=∞

𝑟1=0

∙ 𝑟1
2𝜕𝑟1 

We must deal with the r greater or lesser than operators. To this end, we will break up 

the r2 integral into parts using the fact that integrals are additive:  

∫ 𝑓(𝑥) ∙ 𝜕𝑥

𝑐

𝑎

= ∫ 𝑓(𝑥) ∙ 𝜕𝑥

𝑏

𝑎

+ ∫ 𝑓(𝑥) ∙ 𝜕𝑥

𝑐

𝑏

 

where b is in between a and c. This allows us to do the following: 

𝑒2

4𝜋𝜖0
∫ ∫ |𝜓(𝑟1)|2

𝑟12<
𝑙

𝑟12>
𝑙+1

|𝜓(𝑟2)|2

𝑟2=∞

𝑟2=0

∙ 𝑟2
2𝜕𝑟2

𝑟1=∞

𝑟1=0

∙ 𝑟1
2𝜕𝑟1 = 

𝑒2

4𝜋𝜖0
∫ ∫ |𝜓(𝑟1)|2

𝑟12<
𝑙

𝑟12>
𝑙+1

|𝜓(𝑟2)|2

𝒓𝟐=𝒓𝟏

𝒓𝟐=𝟎

∙ 𝑟2
2𝜕𝑟2

𝑟1=∞

𝑟1=0

∙ 𝑟1
2𝜕𝑟1 +

𝑒2

4𝜋𝜖0
∫ ∫ |𝜓(𝑟1)|2

𝑟12<
𝑙

𝑟12>
𝑙+1

|𝜓(𝑟2)|2

𝒓𝟐=∞

𝒓𝟐=𝒓𝟏

∙ 𝑟2
2𝜕𝑟2

𝑟1=∞

𝑟1=0

∙ 𝑟1
2𝜕𝑟1 

In the first term it is always true that 𝑟1 > 𝑟2, hence 𝑟12> = 𝑟1 and likewise 𝑟12< = 𝑟2. The 

opposite is true on the 2nd term: 

𝑒2

4𝜋𝜖0
∫ ∫ |𝜓(𝑟1)|2

𝑟2
𝑙

𝑟1
𝑙+1

|𝜓(𝑟2)|2 ∙ 𝑟2
2𝜕𝑟2

𝑟2=𝑟1

𝑟2=0

𝑟1=∞

𝑟1=0

∙ 𝑟1
2𝜕𝑟1 +

𝑒2

4𝜋𝜖0
∫ ∫ |𝜓(𝑟1)|2

𝑟1
𝑙

𝑟2
𝑙+1

|𝜓(𝑟2)|2

𝑟2=∞

𝑟2=𝑟1

∙ 𝑟2
2𝜕𝑟2

𝑟1=∞

𝑟1=0

∙ 𝑟1
2𝜕𝑟1 

Next, to make this easier we apply the identity from question 1 for the 1st term above: 

𝑒2

4𝜋𝜖0
∫ ∫ |𝜓(𝑟1)|2

𝑟2
𝑙

𝑟1
𝑙+1

|𝜓(𝑟2)|2 ∙ 𝑟2
2𝜕𝑟2

𝑟2=𝑟1

𝑟2=0

𝑟1=∞

𝑟1=0

∙ 𝑟1
2𝜕𝑟1 =

𝑒2

4𝜋𝜖0
∫ ∫ |𝜓(𝑟1)|2

𝑟2
𝑙

𝑟1
𝑙+1

|𝜓(𝑟2)|2 ∙ 𝑟1
2𝜕𝑟1

𝑟1=∞

𝑟1=𝑟2

𝑟2=∞

𝑟2=0

∙ 𝑟2
2𝜕𝑟2 

Note how the above identity allows us to switch from integrating: ∫ … 𝜕𝑟2
𝑟2=𝑟1

𝑟2=0
 to: 

∫ …
𝑟1=∞

𝑟1=𝑟2
𝜕𝑟1. So the Coulomb integral is: 

𝑒2

4𝜋𝜖0
∫ ∫ |𝜓(𝑟1)|2

𝑟2
𝑙

𝑟1
𝑙+1

|𝜓(𝑟2)|2 ∙ 𝑟1
2𝜕𝑟1

𝑟1=∞

𝑟1=𝑟2

𝑟2=∞

𝑟2=0

∙ 𝑟2
2𝜕𝑟2 +

𝑒2

4𝜋𝜖0
∫ ∫ |𝜓(𝑟1)|2

𝑟1
𝑙

𝑟2
𝑙+1

|𝜓(𝑟2)|2

𝑟2=∞

𝑟2=𝑟1

∙ 𝑟2
2𝜕𝑟2

𝑟1=∞

𝑟1=0

∙ 𝑟1
2𝜕𝑟1 

Please use Mathematica to evaluate it. Hint: oddly both integrals are equal. 

 

 



Answer: a. According to the identity, each integral: 

∫ ∫ 𝑌0,0(𝜃1, 𝜙1)∗ ∙ 𝑌𝑙,𝑚(𝜃1, 𝜙1) ∙ 𝑠𝑖𝑛(𝜃1) ∙ 𝜕𝜙1𝜕𝜃1

2𝜋

𝜙1=0

𝜋

𝜃1=0

 

and  

∫ ∫ 𝑌𝑙,𝑚(𝜃2, 𝜙2)∗ ∙ 𝑌0,0(𝜃2, 𝜙2)

2𝜋

𝜙2=0

∙ 𝑠𝑖𝑛(𝜃2) ∙ 𝜕𝜙2𝜕𝜃2

𝜋

𝜃2=0

 

is 0 only if 𝑌𝑙,𝑚(𝜃1,2, 𝜙1,2) = 𝑌0,0(𝜃1,2, 𝜙1,2). Since there is a restriction on 𝑙 and 𝑚, then 

the sums ∑
4𝜋

2𝑙+1

∞
𝑙=0  and ∑ …𝑙

𝑚=−𝑙  simply disappear except for 𝑙 = 0 and 𝑚 = 0, meaning 

that they only leave behind 
4𝜋

2𝑙+1
= 4𝜋 (since 𝑙 = 0). And even this gets canceled out by 

the wavefunctions that were substituted out of the integrals in the first step: 

∑
4𝜋

2𝑙 + 1

∞

𝑙=0

∑ …

𝑙

𝑚=−𝑙

= 4𝜋 ∙ 𝑌0,0(𝜃1, 𝜙1) ∙ 1 ∙ 𝑌0,0(𝜃1, 𝜙1)∗ ∙ 1 = 4𝜋 ∙
1

√4𝜋
∙

1

√4𝜋
= 1 

 

b. We are now trying to solve: 

𝑒2

4𝜋𝜖0

16𝑍6

𝑎0
6 ∫ ∫ 𝑒−2𝑍∙𝑟1 𝑎0⁄ ∙ 𝑒−2𝑍∙𝑟2 𝑎0⁄ ∙ 𝑟1𝜕𝑟1

𝑟1=∞

𝑟1=𝑟2

𝑟2=∞

𝑟2=0

∙ 𝑟2
2𝜕𝑟2

=
𝑒2

4𝜋𝜖0

16𝑍6

𝑎0
6 ∫ 𝑒−2𝑍∙𝑟2 𝑎0⁄ { ∫ 𝑒−2𝑍∙𝑟1 𝑎0⁄ ∙ 𝑟1𝜕𝑟1

𝑟1=∞

𝑟1=𝑟2

}

𝑟2=∞

𝑟2=0

∙ 𝑟2
2𝜕𝑟2 

Using Mathematica the inner integral is 
𝑎0

4𝑍2 𝑒−2𝑍∙𝑟2 𝑎0⁄ (𝑎0 + 2𝑍𝑟2). We find: 

𝑒2

4𝜋𝜖0

16𝑍6

𝑎0
6 ∫ 𝑒−2∙𝑍𝑟2 𝑎0⁄

𝑟2=∞

𝑟2=0

∙
𝑎0

4𝑍2
𝑒−2∙𝑍𝑟2 𝑎0⁄ (𝑎0 + 2𝑍𝑟2) ∙ 𝑟2

2𝜕𝑟2 =
𝑒2

4𝜋𝜖0

16𝑍6

𝑎0
6

5𝑎0
5

256𝑍5
 

Next one: 

𝑒2

4𝜋𝜖0

256

𝑎0
6 ∫ ∫ 𝑒−2𝑍∙𝑟1 𝑎0⁄ ∙ 𝑒−2𝑍∙𝑟2 𝑎0⁄

𝑟2=∞

𝑟2=𝑟1

∙ 𝑟2𝜕𝑟2

𝑟1=∞

𝑟1=0

∙ 𝑟1
2𝜕𝑟1

=
𝑒2

4𝜋𝜖0

256

𝑎0
6 ∫ 𝑒−2𝑍∙𝑟1 𝑎0⁄ { ∫ 𝑒−2𝑍∙𝑟2 𝑎0⁄ ∙ 𝑟2𝜕𝑟2

𝑟2=∞

𝑟2=𝑟1

}

𝑟1=∞

𝑟1=0

∙ 𝑟1
2𝜕𝑟1 



The integration comes out identically: 
𝑒2

4𝜋𝜖0

16𝑍6

𝑎0
6

5𝑎0
5

256𝑍5 =
𝑒2

4𝜋𝜖0

5

16

𝑍

𝑎0
. The sum of the two is: 

𝑒2

4𝜋𝜖0

5

8

𝑍

𝑎0
. This energy is Z×2.7252×10-18 J, which is Z×17 eV or Z×0.625 Hartrees. 

 

6. a. There is a unit called a Hartree, which is: 

ℏ2

𝑚𝑎0
2 =

𝑒2

4𝜋𝜖0𝑎0
= 4.36 × 10−18 𝐽 = 1 𝐻𝑎𝑟𝑡𝑟𝑒𝑒 

Thus, in units of Hartrees, the energy of a helium atom is (kinetic + nuclear potential + 

electron repulsion): 

𝑍2 − 4𝑍 + 𝑍
5

8
= 𝑍2 + 𝑍 (

5

8
− 4) = 𝑍2 −

27

8
𝑍 

As stated in class, the use of a hydrogenic wavefunction helium isn’t correct, and the 

energy we calculate for the helium atom will be too high. However, using the equation 

above we can empirically use a different atomic number “Zopt” in the wavefunction: 

𝜓1𝑠(𝑟) = 2 ∙ (
𝑍𝑜𝑝𝑡

3

𝑎0
3 )

1
2

𝑒−𝑍𝑜𝑝𝑡∙𝑟1 𝑎0⁄ ∙ 𝑌0,0(𝜃1, 𝜙1) 

to get the lowest energy. What would that Zopt be? 

b. The optimum nuclear charge in the wavefunction (which is akin to the nuclear charge 

experienced by the electrons) is less than 2, the actual value. What physical 

phenomenon can this be attributed to? Hint: you often discuss this in Freshman Chem 

when explaining why the energies of orbitals are 1s < 2s < 2p <3s <3p <4s <3d etc. 

Answer: a. Set the derivative to 0: 

𝜕

𝜕𝑍
(𝑍𝑜𝑝𝑡

2 −
27

8
𝑍𝑜𝑝𝑡) = 0 

Therefore 2𝑍𝑜𝑝𝑡 −
27

8
= 0 and thus 𝑍𝑜𝑝𝑡 =

27

16
. 

 

b. Shielding. 

 

  



Mathematica Example Codes 

Here I will do various calculations with a 3d hydrogenic orbital (n=3, l=2, m=+2) 

wavefunction. 

𝜓 = 𝜓2,2(𝑟)𝑌2,2(𝜃, 𝜙) = {
4

81√30 ∙ 𝑎0
3

𝑟2

𝑎0
2 𝑒−𝑟 3𝑎0⁄ } ∙ {

√15

4
𝑠𝑖𝑛2(𝜃)} ∙ {

1

√2𝜋
𝑒2𝑖∙𝜙} 

First, define the radial orbital and then integrate it. This makes subsequent work easier. 

In the second line, the {r, 0, Infinity} represent the limits of integration and tell it that r is 

the integrand. The “assumptions” assist the software with converging to a reasonable 

answer, especially as it doesn’t know what a0 is: 

 

Well, I must be a monkey’s uncle! Its not normalized! No wait, I integrated 

∫ 𝜓 ∙ 𝑟2 ∙ 𝜕𝑟
∞

0
 and I should have integrated ∫ |𝜓|2 ∙ 𝑟2 ∙ 𝜕𝑟

∞

0
! 

 

Here I used the fact that the radial function is real, so I could just square it rather than 

multiply by the complex conjugate. 

Now let’s do a more complex calculation, that being the kinetic energy: 

−ℏ2

2𝑚
∫ 𝜓∗ ∙

1

𝑟2

𝜕

𝜕𝑟
𝑟2

𝜕

𝜕𝑟
𝜓 ∙ 𝑟2𝜕𝑟

∞

0

 

Here: D[f[r],r] says take the derivative of the pre-defined function f[r] with respect to r. 

You can do a double derivative using: D[D[f[r],r],r], which looks like an onion, or solve a 

more complex expression such as the above using: 

 

Don’t forget your constants! The real result is: 
ℏ2

90𝑚∙𝑎0
2. 

f r 4 81 Sqrt 30 a0^3 r^2 a0^2 Exp r 3 a0

Out[ ]=

2 2

15

r
3 a0 r2

81 a02 a03

In[ ]:= Integrate f r r r, r, 0, Infinity , Assumptions a0 0

Out[ ]= 48
6

5
a03 2

In[ ]:= Integrate f r f r r r, r, 0, Infinity , Assumptions a0 0

Out[ ]= 1

In[ ]:= Integrate f r 1 r^2 D r^2 D f r , r , r r r, r, 0, Infinity , Assumptions a0 0

Out[ ]=

1

45 a02



Now let’s see about the angular. First define the functions: 

 

Next we will see if they are normalized: 

 

Whups, should have 1, not 0! You know what, it looks like I forgot the Jacobian sin()! I 

incorporated it below: 

 

Whups! I forgot to square the wavefunctions! Try again! 

 

Whups! The 𝑌2,2(𝜙) is complex, and the square is really the function times its conjugate! 

 

Finally! You see you need to be careful with these! 

 

In[ ]:= f2 theta Sqrt 15 4 Sin theta ^2

Out[ ]=
1

4
15 Sin theta 2

In[ ]:= f3 phi 1 Sqrt 2 Pi Exp 2 phi

Out[ ]=

2 phi

2

In[ ]:= Integrate f2 theta Integrate f3 phi , phi, 0, 2 Pi , theta, 0, Pi

Out[ ]= 0

In[ ]:= Integrate f2 theta Integrate f3 phi Sin theta , phi, 0, 2 Pi , theta, 0, Pi

Out[ ]= 0

In[ ]:= Integrate f2 theta ^2 Integrate f3 phi ^2 Sin theta , phi, 0, 2 Pi , theta, 0, Pi

Out[ ]= 0

In[ ]:= Integrate f2 theta ^2 Integrate f3 phi Conjugate f3 phi , phi, 0, 2 Pi Sin theta ,

theta, 0, Pi

Out[ ]= 1


