## Chem 542 Problem Set 3

**1.** Transformation of variables between cartesian to cylindrical coordinates means:

$$\frac{\partial}{\partial x} = \cos(\phi) \frac{\partial}{\partial r} - \frac{\sin(\phi)}{r} \frac{\partial}{\partial \phi}$$

and

$$\frac{\partial}{\partial y} = \sin(\phi)\frac{\partial}{\partial r} + \frac{\cos(\phi)}{r}\frac{\partial}{\partial \phi}$$

Now we are going to figure out what  $\frac{\partial^2}{\partial x^2}$  and  $\frac{\partial^2}{\partial y^2}$  are. First, determine  $\frac{\partial^2}{\partial x^2}$  via the FOIL method:

$$(\mathbf{A} - \mathbf{B}) \cdot (\mathbf{A}' - \mathbf{B}')$$
$$\frac{\partial^2}{\partial x^2} = \frac{\partial}{\partial x}\frac{\partial}{\partial x} = \left(\cos(\phi)\frac{\partial}{\partial r} - \frac{\sin(\phi)}{r}\frac{\partial}{\partial \phi}\right) \cdot \left(\cos(\phi)\frac{\partial}{\partial r} - \frac{\sin(\phi)}{r}\frac{\partial}{\partial \phi}\right)$$

Now you just must be careful that you do the "FOIL" method correctly; here it is:

## AA' + AB' + BA' + BB'

 $\frac{\partial^2}{\partial x^2} = \cos(\varphi) \frac{\partial}{\partial r} \cdot \cos(\varphi) \frac{\partial}{\partial r} + \cos(\varphi) \frac{\partial}{\partial r} \cdot \left(\frac{-\sin(\varphi)}{r}\right) \frac{\partial}{\partial \varphi} + \left(\frac{-\sin(\varphi)}{r}\right) \cdot \frac{\partial}{\partial \varphi} \cos(\varphi) \frac{\partial}{\partial r} + \left(\frac{-\sin(\varphi)}{r}\right) \frac{\partial}{\partial \varphi} \cdot \left(\frac{-\sin(\varphi)}{r}\right) \frac{\partial}{\partial \varphi} + \left(\frac{-\sin(\varphi)}{r}\right) \frac{\partial}{\partial \varphi} +$ 

Now we are going to now simplify it.

**a.** Why **can** you simplify the **AA**' term as:

$$\cos(\phi)\frac{\partial}{\partial r}\cos(\phi)\frac{\partial}{\partial r} = \cos^2(\phi)\frac{\partial^2}{\partial r^2}$$

b. Why can't you simplify the AB' term as:

$$\cos(\phi)\frac{\partial}{\partial r}\left(\frac{-\sin(\phi)}{r}\right)\frac{\partial}{\partial \phi} = \left(\frac{-\cos(\phi)\sin(\phi)}{r}\right)\frac{\partial}{\partial r}\frac{\partial}{\partial \phi}$$

but you can as:

$$\cos(\phi)\frac{\partial}{\partial r}\left(\frac{-\sin(\phi)}{r}\right)\frac{\partial}{\partial \phi} = -\cos(\phi)\sin(\phi)\frac{\partial}{\partial r}\left(\frac{1}{r}\right)\frac{\partial}{\partial \phi}$$

C. Why can't you simplify the BA' term as:

$$-\left(\frac{\sin(\phi)}{r}\right)\frac{\partial}{\partial\phi}\cos(\phi)\frac{\partial}{\partial r} = \left(\frac{-\sin(\phi)\cos(\phi)}{r}\right)\frac{\partial}{\partial\phi}\frac{\partial}{\partial r}$$

**d.** Why **can't** you simplify the **BB'** term as:

$$\left(\frac{-\sin(\phi)}{r}\right)\frac{\partial}{\partial\phi}\left(\frac{-\sin(\phi)}{r}\right)\frac{\partial}{\partial\phi} = \frac{\sin^2(\phi)}{r^2}\frac{\partial^2}{\partial\phi^2}$$

but you **can** as:

$$\left(\frac{-\sin(\phi)}{r}\right)\frac{\partial}{\partial\phi}\left(\frac{-\sin(\phi)}{r}\right)\frac{\partial}{\partial\phi} = \left(\frac{\sin(\phi)}{r^2}\right)\frac{\partial}{\partial\phi}\sin(\phi)\frac{\partial}{\partial\phi}$$

## **Answers:**

- **a.** Because  $\frac{\partial}{\partial r}$  doesn't operate on  $\cos(\varphi)$ , so it "slips" past the derivative.
- **b.** Because  $\frac{1}{r}$  cannot slip past the  $\frac{\partial}{\partial r}$  operator, but  $\sin(\phi)$  can.
- **c.** Because  $\cos(\phi)$  cannot pass through the  $\frac{\partial}{\partial \phi}$  operator.

**d.** Because  $\sin(\varphi)$  cannot pass through the  $\frac{\partial}{\partial \varphi}$  operator, but  $\frac{1}{r}$  can.

**2.** Using the "rules" from question 1, can you determine what  $\frac{\partial^2}{\partial x^2}$  is in cylindrical coordinates?

## Answer:

$$\cos^{2}(\phi)\frac{\partial^{2}}{\partial r^{2}} - \cos(\phi)\sin(\phi)\frac{\partial}{\partial r}\cdot\left(\frac{1}{r}\right)\frac{\partial}{\partial \phi} - \left(\frac{\sin(\phi)}{r}\right)\cdot\frac{\partial}{\partial \phi}\cos(\phi)\frac{\partial}{\partial r} + \left(\frac{\sin(\phi)}{r^{2}}\right)\frac{\partial}{\partial \phi}\cdot\sin(\phi)\frac{\partial}{\partial \phi}$$

**3.** Using the "rules" from question 1, can you determine what  $\frac{\partial^2}{\partial y^2}$  is in cylindrical coordinates? You must show your work on this one.

**Answer:** Starting with:

$$\frac{\partial^2}{\partial y^2} = \frac{\partial}{\partial y}\frac{\partial}{\partial y} = \left(\sin(\phi)\frac{\partial}{\partial r} + \frac{\cos(\phi)}{r}\frac{\partial}{\partial \phi}\right) \cdot \left(\sin(\phi)\frac{\partial}{\partial r} + \frac{\cos(\phi)}{r}\frac{\partial}{\partial \phi}\right)$$

This leads to:

$$\frac{\partial^2}{\partial y^2} = \sin(\phi)\frac{\partial}{\partial r}\sin(\phi)\frac{\partial}{\partial r} + \sin(\phi)\frac{\partial}{\partial r}\frac{\cos(\phi)}{r}\frac{\partial}{\partial \phi} + \frac{\cos(\phi)}{r}\frac{\partial}{\partial \phi}\sin(\phi)\frac{\partial}{\partial r} + \frac{\cos(\phi)}{r}\frac{\partial}{\partial \phi}\frac{\cos(\phi)}{r}\frac{\partial}{\partial \phi} = \frac{\partial^2}{\partial y^2} = \sin^2(\phi)\frac{\partial^2}{\partial r^2} + \sin(\phi)\cos(\phi)\frac{\partial}{\partial r}\left(\frac{1}{r}\right)\frac{\partial}{\partial \phi} + \left(\frac{\cos(\phi)}{r}\right)\frac{\partial}{\partial \phi}\sin(\phi)\frac{\partial}{\partial r} + \left(\frac{\cos(\phi)}{r^2}\right)\frac{\partial}{\partial \phi}\cos(\phi)\frac{\partial}{\partial \phi}\sin(\phi)\frac{\partial}{\partial r}$$

My only question to you is, did you notice that I gave you the answer on the next page before or after you worked the question?

It turns out that  $\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} =$   $\cos^2(\phi) \frac{\partial^2}{\partial r^2} - \cos(\phi) \sin(\phi) \frac{\partial}{\partial r} \cdot \left(\frac{1}{r}\right) \frac{\partial}{\partial \phi} - \left(\frac{\sin(\phi)}{r}\right) \cdot \frac{\partial}{\partial \phi} \cos(\phi) \frac{\partial}{\partial r} + \left(\frac{\sin(\phi)}{r^2}\right) \frac{\partial}{\partial \phi} \cdot \sin(\phi) \frac{\partial}{\partial \phi} +$  $\sin^2(\phi) \frac{\partial^2}{\partial r^2} + \sin(\phi) \cos(\phi) \frac{\partial}{\partial r} \cdot \left(\frac{1}{r}\right) \frac{\partial}{\partial \phi} + \left(\frac{\cos(\phi)}{r}\right) \cdot \frac{\partial}{\partial \phi} \sin(\phi) \frac{\partial}{\partial r} + \left(\frac{\cos(\phi)}{r^2}\right) \frac{\partial}{\partial \phi} \cdot \cos(\phi) \frac{\partial}{\partial \phi}$ 

Note that two middle terms cancel:

$$-\cos(\phi)\sin(\phi)\frac{\partial}{\partial r}\cdot\left(\frac{1}{r}\right)\frac{\partial}{\partial \phi}+\sin(\phi)\cos(\phi)\frac{\partial}{\partial r}\cdot\left(\frac{1}{r}\right)\frac{\partial}{\partial \phi}=0$$

Which leaves:  $\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} =$ 

$$\sin^{2}(\phi)\frac{\partial^{2}}{\partial r^{2}} + \left(\frac{\cos(\phi)}{r}\right) \cdot \frac{\partial}{\partial \phi}\sin(\phi)\frac{\partial}{\partial r} + \left(\frac{\cos(\phi)}{r^{2}}\right)\frac{\partial}{\partial \phi} \cdot \cos(\phi)\frac{\partial}{\partial \phi}$$

Now we will break the sum into different parts to simplify it. I will re-represent  $\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$  as:

4. a. Can you simplify the sum of the two leading terms to remove the angle parts:

$$\cos^{2}(\phi)\frac{\partial^{2}}{\partial r^{2}} + \sin^{2}(\phi)\frac{\partial^{2}}{\partial r^{2}} = ?$$

Hint, it's really easy- what is the simplest trig identity you know?

**b.** Now let's deal with these two "middle" terms. We can show that if you add them together then:

$$-\left(\frac{\sin(\phi)}{r}\right)\frac{\partial}{\partial\phi}\cos(\phi)\frac{\partial}{\partial r} + \left(\frac{\cos(\phi)}{r}\right)\frac{\partial}{\partial\phi}\sin(\phi)\frac{\partial}{\partial r} = \frac{1}{r}\frac{\partial}{\partial r}$$

How? Let's start by acting  $\Psi(r) \cdot \Psi(\varphi)$  on the first term above:

$$-\left(\frac{\sin(\phi)}{r}\right)\frac{\partial}{\partial\phi}\cos(\phi)\frac{\partial\Psi(r)\cdot\Psi(\phi)}{\partial r} = -\left(\frac{\sin(\phi)}{r}\right)\frac{\partial}{\partial\phi}\cos(\phi)\cdot\Psi(\phi)\frac{\partial\Psi(r)}{\partial r}$$

Can you show that the expression above can be simplified to:

$$\left(\frac{\sin^2(\phi)}{r}\right)\Psi(\phi)\frac{\partial\Psi(r)}{\partial r} - \left(\frac{\sin(\phi)\cos(\phi)}{r}\right)\frac{\partial\Psi(\phi)}{\partial\phi}\frac{\partial\Psi(r)}{\partial r}$$

**C.** Likewise show that the second term in pt. b reduces to:

$$\left(\frac{\cos(\phi)}{r}\right)\frac{\partial}{\partial\phi}\sin(\phi)\frac{\partial\Psi(r)\cdot\Psi(\phi)}{\partial r}$$
$$= \left(\frac{\cos^2(\phi)}{r}\right)\Psi(\phi)\frac{\partial\Psi(r)}{\partial r} + \left(\frac{\cos(\phi)\sin(\phi)}{r}\right)\frac{\partial\Psi(\phi)}{\partial\phi}\frac{\partial\Psi(r)}{\partial r}$$

**d.** Now can you show that:

$$\left[-\left(\frac{\sin(\phi)}{r}\right)\frac{\partial}{\partial\phi}\cos(\phi)\frac{\partial}{\partial r} + \left(\frac{\cos(\phi)}{r}\right)\frac{\partial}{\partial\phi}\sin(\phi)\frac{\partial}{\partial r}\right]\Psi(r)\cdot\Psi(\phi) = \frac{1}{r}\frac{\partial\Psi(r)\cdot\Psi(\phi)}{\partial r}$$

Hint: for pt. b&c use the product rule.

**Answers: a.** First just factor:  $\cos^2(\phi) \frac{\partial^2}{\partial r^2} + \sin^2(\phi) \frac{\partial^2}{\partial r^2}$  as  $(\cos^2(\phi) + \sin^2(\phi)) \frac{\partial^2}{\partial r^2}$ and note that:  $\cos^2(\phi) + \sin^2(\phi) = 1$ . Thus  $\cos^2(\phi) \frac{\partial^2}{\partial r^2} + \sin^2(\phi) \frac{\partial^2}{\partial r^2} = \frac{\partial^2}{\partial r^2}$ . **b.** The first step is to operate on:  $\frac{\partial}{\partial \phi} \cos(\phi) \cdot \Psi(\phi)$  which uses the product rule:  $\frac{\partial}{\partial \phi} \cos(\phi) \cdot \Psi(\phi) = -\sin(\phi) \Psi(\phi) + \cos(\phi) \frac{\partial \Psi(\phi)}{\partial \phi}$ . Insert this into the equation:

$$-\left(\frac{\sin(\phi)}{r}\right)\left(-\sin(\phi)\Psi(\phi)+\cos(\phi)\frac{\partial\Psi(\phi)}{\partial\phi}\right)\frac{\partial\Psi(r)}{\partial r}$$
 which simplifies to the answer.

**c.** Likewise 
$$\left(\frac{\cos(\phi)}{r}\right)\frac{\partial}{\partial\phi}\sin(\phi)\frac{\partial\Psi(r)\cdot\Psi(\phi)}{\partial r} = \left(\frac{\cos(\phi)}{r}\right)\frac{\partial}{\partial\phi}\sin(\phi)\cdot\Psi(\phi)\frac{\partial\Psi(r)}{\partial r} =$$
  
 $\left(\frac{\cos(\phi)}{r}\right)\left(\cos(\phi)\cdot\Psi(\phi)+\sin(\phi)\cdot\frac{\partial\Psi(\phi)}{\partial\phi}\right)\frac{\partial\Psi(r)}{\partial r} =$   
 $\frac{\cos^{2}(\phi)}{r}\Psi(\phi)\frac{\partial\Psi(r)}{\partial r} + \frac{\cos(\phi)\sin(\phi)}{r}\frac{\partial\Psi(\phi)}{\partial\phi}\frac{\partial\Psi(r)}{\partial r}$ 

d. Combining the terms in pt. b&c:

$$\left(\frac{\sin^2(\phi)}{r}\right)\Psi(\phi)\frac{\partial\Psi(r)}{\partial r} - \left(\frac{\sin(\phi)\cos(\phi)}{r}\right)\frac{\partial\Psi(\phi)}{\partial\phi}\frac{\partial\Psi(r)}{\partial r} + \left(\frac{\cos^2(\phi)}{r}\right)\Psi(\phi)\frac{\partial\Psi(r)}{\partial r} + \left(\frac{\cos(\phi)\sin(\phi)}{r}\right)\frac{\partial\Psi(\phi)}{\partial\phi}\frac{\partial\Psi(r)}{\partial r} = \frac{(\sin^2(\phi) + \cos^2(\phi))}{r}\Psi(\phi)\frac{\partial\Psi(r)}{\partial r} = \frac{\Psi(\phi)}{r}\frac{\partial\Psi(r)}{\partial r}$$

Therefore you can state that the operator is  $\frac{1}{r}\frac{\partial}{\partial r}$ 

**5.** Last one. In question 4 we have simplified all the terms but the last two:

$$\left(\frac{\sin(\phi)}{r^2}\right)\frac{\partial}{\partial\phi}\cdot\sin(\phi)\frac{\partial}{\partial\phi}+\left(\frac{\cos(\phi)}{r^2}\right)\frac{\partial}{\partial\phi}\cdot\cos(\phi)\frac{\partial}{\partial\phi}$$

Try acting on this operator with a wavefunction  $\Psi(r) \cdot \Psi(\phi)$  to show that it is equal to:

$$\Psi(\mathbf{r})\left(\frac{1}{\mathbf{r}^2}\frac{\partial^2\Psi(\boldsymbol{\varphi})}{\partial\boldsymbol{\varphi}^2}\right)$$

Hint, you're going to use the product rule again.

**Answer:** Well, do what it says:

$$\left(\frac{\sin(\phi)}{r^2}\right)\frac{\partial}{\partial\phi} \cdot \sin(\phi)\frac{\partial\Psi(r)\cdot\Psi(\phi)}{\partial\phi} + \left(\frac{\cos(\phi)}{r^2}\right)\frac{\partial}{\partial\phi} \cdot \cos(\phi)\frac{\partial\Psi(r)\cdot\Psi(\phi)}{\partial\phi} = \Psi(r)\left(\frac{\sin(\phi)}{r^2}\right)\frac{\partial}{\partial\phi} \cdot \sin(\phi)\frac{\partial\Psi(\phi)}{\partial\phi} + \Psi(r)\left(\frac{\cos(\phi)}{r^2}\right)\frac{\partial}{\partial\phi} \cdot \cos(\phi)\frac{\partial\Psi(\phi)}{\partial\phi}$$

Now you have to use the product rule:

$$\Psi(r)\left(\frac{\sin(\phi)}{r^{2}}\right)\left(\cos(\phi)\frac{\partial\Psi(\phi)}{\partial\phi} + \sin(\phi)\frac{\partial^{2}\Psi(\phi)}{\partial\phi^{2}}\right) + \Psi(r)\left(\frac{\cos(\phi)}{r^{2}}\right)\left(-\sin(\phi)\frac{\partial\Psi(\phi)}{\partial\phi} + \cos(\phi)\frac{\partial^{2}\Psi(\phi)}{\partial\phi^{2}}\right) = \\\Psi(r)\left(\frac{\sin(\phi)\cos(\phi)}{r^{2}}\frac{\partial\Psi(\phi)}{\partial\phi} + \frac{\sin^{2}(\phi)}{r^{2}}\frac{\partial^{2}\Psi(\phi)}{\partial\phi^{2}}\right) + \Psi(r)\left(\frac{-\sin(\phi)\cos(\phi)}{r^{2}}\frac{\partial\Psi(\phi)}{\partial\phi} + \frac{\cos^{2}(\phi)}{r^{2}}\frac{\partial^{2}\Psi(\phi)}{\partial\phi^{2}}\right) = \\\Psi(r)\left(\frac{\sin^{2}(\phi)}{r^{2}}\frac{\partial^{2}\Psi(\phi)}{\partial\phi^{2}}\right) + \Psi(r)\left(\frac{\cos^{2}(\phi)}{r^{2}}\frac{\partial^{2}\Psi(\phi)}{\partial\phi^{2}}\right) = \Psi(r)\left(\frac{\sin^{2}(\phi) + \cos^{2}(\phi)}{r^{2}}\frac{\partial^{2}\Psi(\phi)}{\partial\phi^{2}}\right) = \Psi(r)\left(\frac{1}{r^{2}}\frac{\partial^{2}\Psi(\phi)}{\partial\phi^{2}}\right) = \\\Psi(r)\left(\frac{\sin^{2}(\phi)}{r^{2}}\frac{\partial^{2}\Psi(\phi)}{\partial\phi^{2}}\right) + \Psi(r)\left(\frac{\cos^{2}(\phi)}{r^{2}}\frac{\partial^{2}\Psi(\phi)}{\partial\phi^{2}}\right) = \Psi(r)\left(\frac{\sin^{2}(\phi) + \cos^{2}(\phi)}{r^{2}}\frac{\partial^{2}\Psi(\phi)}{\partial\phi^{2}}\right) = \\\Psi(r)\left(\frac{\sin^{2}(\phi)}{r^{2}}\frac{\partial^{2}\Psi(\phi)}{\partial\phi^{2}}\right) + \Psi(r)\left(\frac{\cos^{2}(\phi)}{r^{2}}\frac{\partial^{2}\Psi(\phi)}{\partial\phi^{2}}\right) = \\\Psi(r)\left(\frac{\sin^{2}(\phi)}{r^{2}}\frac{\partial^{2}\Psi(\phi)}{\partial\phi^{2}}\right) = \\\Psi(r)\left(\frac{\sin^{2}(\phi)}{r^{2}$$

are the negative of eachother, so when added you get 0.

**6.** Calculate the 1s and 1p kinetic energy (in eV) for an electron in a 1 nm sphere. Discuss whether this is a lot of energy or not so much (perhaps compare it to the temperature necessary to reach the same thermal energy). *Hint:* you have to be careful about finding the zero's of a Bessel vs. spherical Bessel function.

**Answer:** From class, we saw that the energy was related to:

$$J_{0 or 1}(k \cdot a) = 0$$

where  $k \cdot a$  provides 0's for the spherical Bessel functions. The 1<sup>st</sup> zero for the 1-s state is at 3.14, and for the 1-p state it is 4.49, see: https://guantummechanics.ucsd.edu/ph130a/130\_notes/node226.html.

Hence, the energy of the 1-s state is:

$$k \cdot a = \sqrt{\frac{2mE}{\hbar^2}}a = 3.14$$

Using a of 1 nm, etc., we find an energy of  $6.02 \times 10^{-20}$  J, or 0.38 eV. Similarly, for the 1p state we find E=1.23×10<sup>-19</sup> J, or 0.77 eV. This is a very large amount of energy, as it corresponds to a thermal temperature of 4400K.

**7.** A certain one-particle, one-dimensional system has a wave function given by

$$\psi = ae^{-ibt}e^{-bmx^2/\hbar}$$

where a and b are constants and m is the particle's mass. Given that the timedependent Schrodinger equation is:

$$-\frac{\hbar}{i}\frac{\partial}{\partial t}\psi = -\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}\psi + \hat{V}\psi = E\psi$$

- **a.** Please find the potential energy function V.
- **b.** While you're at it, find E (energy) for this system.

**Answer: a.** Starting with:

$$-\frac{\hbar}{i}\frac{\partial}{\partial t}\psi = -\frac{\hbar}{i}\frac{\partial}{\partial t}ae^{-ibt}e^{-bmx^{2}/\hbar} = \hbar b \cdot ae^{-ibt}e^{-bmx^{2}/\hbar}$$

Factoring out  $\psi$  gives:

$$-\frac{\hbar}{i}\frac{\partial}{\partial t}\psi = \hbar b \cdot \psi$$

And on the other side:

$$-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}ae^{-ibt}e^{-bmx^2/\hbar} = -\frac{\hbar^2}{2m}ae^{-ibt}\left\{\frac{2bme^{-bmx^2/\hbar}}{\hbar}\left(\frac{2bmx^2}{\hbar} - 1\right)\right\}$$

Simplification gives:

$$-\frac{\hbar^2}{2m}ae^{-ibt}\left\{\frac{2bme^{-bmx^2/\hbar}}{\hbar}\left(\frac{2bmx^2}{\hbar}-1\right)\right\}$$
$$=-\frac{\hbar^2}{2m}ae^{-ibt}\left\{\frac{4b^2m^2x^2e^{-bmx^2/\hbar}}{\hbar^2}-\frac{2bme^{-bmx^2/\hbar}}{\hbar}\right\}$$

Factoring out  $\psi$  gives:

$$-2b^2mx^2\cdot\psi+\hbar b\cdot\psi$$

Now going back to the original  $-\frac{\hbar}{i}\frac{\partial}{\partial t}\psi = -\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}\psi + \hat{V}\psi$  expression:

$$\hbar b\cdot \psi = -2b^2mx^2\cdot \psi + \hbar b\cdot \psi + \hat{V}\psi$$

We can simply solve for V:

$$\hbar b \cdot \psi + 2b^2 m x^2 \cdot \psi - \hbar b \cdot \psi = \hat{V}\psi$$

Therefore  $\hat{V} = 2b^2mx^2$ 

**b.** Since  $-\frac{\hbar}{i}\frac{\partial}{\partial t}\psi = \hat{H}\psi = E\psi$ , and that  $-\frac{\hbar}{i}\frac{\partial}{\partial t}\psi = \hbar b \cdot \psi = E\psi$ , clearly the energy is  $\hbar b$ .

**8.** Let's say that the last problem was secretly about the Harmonic oscillator, for which the potential energy operator is:  $\hat{V} = \frac{1}{2}k_f x^2$ . Can you determine what "b" actually is in terms of the angular frequency:  $\omega = \sqrt{\frac{k_f}{m}}$ , and show that the energy is:  $E = \frac{1}{2}\hbar\omega$ ?

**Answer:** If  $\hat{V} = \frac{1}{2}k_f x^2 = 2b^2m = \frac{1}{2}k_f$ , then  $b = \frac{1}{2}\sqrt{\frac{k_f}{m}} = \frac{1}{2}\omega$ , and thus  $\hat{V} = 2b^2mx^2 = 2\frac{\omega^2}{4}mx^2 = \frac{1}{2}m\omega^2x^2$ . Likewise the energy is  $E = \frac{1}{2}\hbar\sqrt{\frac{k_f}{m}} = \frac{1}{2}\hbar\omega$ .

9. Write the following complex numbers in the x+iy form.

**a.** 
$$(2 + 3i)^2$$
 **b.**  $\frac{1+3i}{1-2i}$ 

Answer: a. Just square the expression:

$$(2 + 3i) \cdot (2 + 3i) = 4 + 6i + 6i + 9i2 = 4 - 9 + 12i = -5 + 12i$$

**b.** Try the same approach as last time:

$$\frac{1+3i}{1-2i}\frac{(1+2i)}{(1+2i)} = \frac{1+2i+3i+6i^2}{1+2i-2i-4i^2} = \frac{-5+5i}{5} = -1+i$$

**10.** Although you should be aware that imaginary numbers are expressed as: a+ib, they may also come in the form:  $re^{i\theta}$  where x is the real axis and y is the imaginary as shown here. Can you transform the following into that form?

**a.** 1+2i **b.** 1-i **c.**  $\frac{1}{1+i}$ 

Hint: the last one requires some additional effort.

**Answer: a.** Here you can see that the length and angle are defined by standard trigonometric relationships:  $r = \sqrt{1^2 + 2^2} = \sqrt{5}$ ;  $\theta = atan\left(\frac{2}{1}\right) = 1.107$ . Thus, the point is  $\sqrt{5} \cdot e^{1.107 \cdot \theta} = \sqrt{5} \cdot e^{i \cdot 0.35\pi \cdot \theta}$ .

- **b.**  $\sqrt{2} \cdot e^{-0.7845 \cdot \theta} = \sqrt{2} \cdot e^{-i \cdot \frac{\pi}{4} \cdot \theta}$
- **C.**  $\frac{1}{(1+i)} \frac{1-i}{(1-i)} = \frac{1-i}{1-i+i-i^2} = \frac{1-i}{2} = \frac{1}{2} \frac{1}{2}i.$

Therefore the answer is  $\frac{\sqrt{2}}{2} \cdot e^{-0.7845 \cdot \theta} = \frac{\sqrt{2}}{2} \cdot e^{-i \cdot \frac{\pi}{4} \cdot \theta}$ .

