
Chem 542 Problem Set 2 

1. The step barrier from the first problem set: 

 

can be modeled using the following Matlab code: 

clear all; 
syms B C k1 k2  
eqn1= 1+B == C; 
eqn2=i*k1-i*k1*B==i*k2*C; 
[F,U] = equationsToMatrix([eqn1, eqn2], [B, C]); 
X = linsolve(F,U)  

As per what we did in class and the previous homework set, we can set A=1 and thus 

the code above solves for the coefficients B and C. The solutions are as expected: 

(k1 - k2)/(k1 + k2) and (2*k1)/(k1 + k2) 

These allow us to calculate various parameters and plot the wavefunctions using the 

following code. Note that two wavefunctions are plotted in Figure 1a (one above and 

anther below the barrier), while the reflection |B|2 and transmission |C|2 in Figure 1b. 

clear all; 

%define constants 
h=1.05e-34; m=9.1e-31; V=1.6e-19; nm=1e-9; i=sqrt(-1); 
%the energy varies from 0 to 2X times the potential 
for j=1:200  
energy(j)=j*V/100; 
k1=sqrt(2*m*energy(j)/h/h);      %the wavevectors 
k2=sqrt(2*m*(energy(j)-V)/h/h); 
b(j)=(k1 - k2)/(k1 + k2);        %the wavefunction coefficients 
c(j)=(2*k1)/(k1 + k2); 
ref(j)=b(j)*conj(b(j));          %percent reflection 
trans(j)=c(j)*conj(c(j));        %percent transmission? 
    %calculates the wavefunction over 2000 points at every energy 
    for k=1:2000 
        xax(k)=(k-1000)/500*nm;  %the position in meters 
        wf(k,j)=exp(i*k1*xax(k))+b(j)*exp(-i*k1*xax(k)); 
        if (xax(k)>=0)           %if right of the barrier at x=0 
            wf(k,j)=c(j)*exp(i*k2*xax(k)); 
        end; 
    end; 
end; 
%plots the wavefunctions, above and below the barrier, with an offset for 
%clarity 



plot(xax,wf(:,50),'b'); hold on; plot(xax,wf(:,150)+3,'r'); figure; 

plot(energy,ref,'b'); hold on; plot(energy,trans,'r'); 

 

Whups! While the wavefunctions look correct, and the reflection |B|2 is ok, it turns out 

that |C|2 is not quite equal to the transmission! This is because particles are moving 

more slowly in region II since there is less kinetic energy available. This can be 

accounted for by the ratio of the wavevectors. Consequently, the percent transmission 

is actually: 
k2

k1
|C|2. Please modify the code with this information and submit a figure 

displaying the correct reflection and transmission. 

Answer: The code should be altered as so: 

trans(j)=(k2/k1)*c(j)*conj(c(j)); %takes care of the flux 

And here is the figure: 

 

  



2. The multiple step barrier is described as so: 

 

a. Please use Matlab to solve for B and E, and then calculate the reflection and 

transmission as a function of energy above the barrier; of course provide your code for 

full credit. I suggest using a 1 eV barrier for V0, 2 eV for V1, and a step length of at least 

L=1 nm or greater.  

b. Please experiment with the effects of L and the potential energies on the 

transmissions and reflections and describe what you see. 

Answer. a. 
clear all; 
syms B C D E k1 k2 k3 L 
eqn1=1+B == C+D; 
eqn2=k1-k1*B==k2*C-k2*D; 
eqn3=C*exp(i*k2*L)+D*exp(-i*k2*L)==E*exp(i*k3*L); 
eqn4=k2*C*exp(i*k2*L)-k2*D*exp(-i*k2*L)==k3*E*exp(i*k3*L); 
[H,U] = equationsToMatrix([eqn1, eqn2, eqn3, eqn4], [B, C, D, E]); 
X = linsolve(H,U)  

  
clear all; 
%define constants 
h=1.05e-34; m=9.1e-31; V1=1.6e-19; V2=2*1.6e-19; L=3.5e-9; i=sqrt(-1);  
for j=1:1000  
    energy(j)=j*V1/100;   %the energy varies from 0 to 10 times the potential 
    k1=sqrt(2*m*energy(j)/h/h);  
    k2=sqrt(2*m*(energy(j)-V1)/h/h); 
    k3=sqrt(2*m*(energy(j)-V2)/h/h); 
    b(j)=(k1*k2 + k1*k3 - k2*k3 + k2^2*exp(L*k2*2i) - k2^2 + 

k1*k2*exp(L*k2*2i) - k1*k3*exp(L*k2*2i) - k2*k3*exp(L*k2*2i))/(k1*k2 + k1*k3 

+ k2*k3 - k2^2*exp(L*k2*2i) + k2^2 + k1*k2*exp(L*k2*2i) - k1*k3*exp(L*k2*2i) 

+ k2*k3*exp(L*k2*2i)); 
    c(j)=(2*k1*(k2 + k3))/(k1*k2 + k1*k3 + k2*k3 - k2^2*exp(L*k2*2i) + k2^2 + 

k1*k2*exp(L*k2*2i) - k1*k3*exp(L*k2*2i) + k2*k3*exp(L*k2*2i)); 
    d(j)=(2*k1*exp(L*k2*2i)*(k2 - k3))/(k1*k2 + k1*k3 + k2*k3 - 

k2^2*exp(L*k2*2i) + k2^2 + k1*k2*exp(L*k2*2i) - k1*k3*exp(L*k2*2i) + 

k2*k3*exp(L*k2*2i)); 
    e(j)=(4*k1*k2*exp(L*k2*1i)*exp(-L*k3*1i))/(k1*k2 + k1*k3 + k2*k3 - 

k2^2*exp(L*k2*2i) + k2^2 + k1*k2*exp(L*k2*2i) - k1*k3*exp(L*k2*2i) + 

k2*k3*exp(L*k2*2i)); 
    trans(j)=(k3/k1)*e(j)*conj(e(j)); 



    ref(j)=b(j)*conj(b(j)); 
end; 
plot(energy,ref,'b'); hold on; plot(energy,trans,'r'); 

 

Here is a figure of the reflection and transmission, using a rather long step length of 

L=3.5 nm. This is plotted out to 10 eV. 

  

b. You tend to get more resonances with increasing L and increasing potential 

energies.  

3. The single barrier problem in a 1-dimensional scattering problem is set up as so:  

 

Can you use Matlab to plot transmission (|E|2=E*E) vs energy for an electron impinging 

upon a 1 nm (=1×10-9 m), 1 eV (=1.6×10-19 J) barrier as a function of energy, from 0 J to 

10 eV (=16×10-19 J)? Once successful please send me your code as well as the figure. 

Answer. 
 

clear all; 
syms B C D E k1 k2 L 
eqn1= 1+B == C+D; 
eqn2=i*k1-i*k1*B==i*k2*C-i*k2*D; 
eqn3=C*exp(i*k2*L)+D*exp(-i*k2*L)==E*exp(i*k1*L); 
eqn4=i*k2*C*exp(i*k2*L)-i*k2*D*exp(-i*k2*L)== i*k1*E*exp(i*k1*L); 
[F,U] = equationsToMatrix([eqn1, eqn2, eqn3, eqn4], [B, C, D, E]); 



X = linsolve(F,U) 

  
h=1.05e-34; m=9.1e-31; L=1e-9; V=2*1.6e-19; i=sqrt(-1); 
for j=1:10000  

energy(j)=j*1.6e-19/1000; 

k1=sqrt(2*m*energy(j)/h/h);  

k2=sqrt(2*m*(energy(j)-V)/h/h); 

  

T(j)=conj((4*k1*k2*exp(-L*k1*1i)*exp(L*k2*1i))/(2*k1*k2 - k1^2*exp(L*k2*2i) - 

k2^2*exp(L*k2*2i) + k1^2 + k2^2 + 2*k1*k2*exp(L*k2*2i)))*(4*k1*k2*exp(-

L*k1*1i)*exp(L*k2*1i))/(2*k1*k2 - k1^2*exp(L*k2*2i) - k2^2*exp(L*k2*2i) + 

k1^2 + k2^2 + 2*k1*k2*exp(L*k2*2i));  

end; 

plot(energy/1.6e-19,T); 

 

4. Now do the same from question 1 using the following potential energy surface. For 

this problem plot the transmission (|T|2=T*T) as a function of energy from 0 J to 10 eV. 

Also send me your program. 

 

 

Hint: it should look like this: 

 

 

 

 

 

 

Answer. 
Basically provided in the question. 



5. Here we will learn an important lesson 

about quantum. We will perform a series of 

calculations on the half-infinite well shown 

here. We will do the calculations correctly, yet, 

we will nonetheless get a false result as 

described below.  

We will use the same approach as on the last 

few questions to examine the wavefunctions 

for which the energy is less than the potential 

(i.e. E<V0). We will specifically model an 

electron in a 1 nm trap, with a V0=1 eV barrier to the right of the trap and an infinite 

barrier to the left. Note that this makes the wavefunction in region 1 a sine wave. You 

should be good enough at coding Matlab now to solve for the coefficients B and C. 

Now, here is the problem. Matlab provides a solution for B and C as a function of k1 and 

k2, which are themselves functions of energy. However, when you write your code to 

visualize the wavefunctions at different energies (see below for a snippet to get you 

started) you get the following: 

 

Clearly these wavefunctions are not well behaved- they are flying off to infinity either 

upwards or downwards, and they should rather go to 0 past x=1 nm, where the 1 eV 

barrier kicks in.  

Here is the question: why is this happening? We did the calculations correctly, but 

wavefunctions can’t just fly off to ±∞ like this! Please send me your code to repeat the 

above example wavefunctions, and then try to resolve this issue. Hints: there is a 

misinterpretation on how to do this calculation correctly. Perhaps if you plot 

wavefunctions as just the right energies there won’t be a problem? 

 

 



Here is a bit of Matlab code for visualizing wavefunctions- note that it isn’t complete. 

h=1.05e-34; m=9.1e-31; L=1e-9; V=2*1.6e-19; i=sqrt(-1); 
for j=1:100  
energy(j)=j*V/100; 
k1=sqrt(2*m*energy(j)/h/h);  
k2=… 
a(j)=…); 
b(j)=…); 
    for k=1:2000 
        xax(k)=(k-1)/500*L; 
        wf(k,j)=sin(k1*xax(k)); 
        if (xax(k)>=L) 
            wf(k,j)=a(j)*exp(i*k2*xax(k))+b(j)*exp(-i*k2*xax(k)); 
        end; 

    end; 
end; 

 

Answer:  
There is my own code: 
clear all; 
syms A B k1 k2 L 
eqn1= sin(k1*L)==A*exp(i*k2*L)+B*exp(-i*k2*L); 
eqn2= k1*cos(k1*L)==i*k2*A*exp(i*k2*L)-i*k2*B*exp(-i*k2*L); 
[F,U] = equationsToMatrix([eqn1, eqn2], [A, B]); 
X = linsolve(F,U) 

  
h=1.05e-34; m=9.1e-31; L=1e-9; V=2*1.6e-19; i=sqrt(-1); 
for j=1:2000  
    energy(j)=j*1.6e-19/1000; 
    k1=sqrt(2*m*energy(j)/h/h);  
    k2=sqrt(2*m*(energy(j)-V)/h/h); 
    a(j)=-(exp(-L*k2*1i)*(k1*cos(L*k1) + k2*sin(L*k1)*1i)*1i)/(2*k2); 
    b(j)=(exp(L*k2*1i)*(k1*cos(L*k1) - k2*sin(L*k1)*1i)*1i)/(2*k2); 
    fun1(j)=cot(k1*L); fun2(j)=-sqrt(V/energy(j)-1); 
    for k=1:2000 
        xax(k)=(k-1)/500*L; 
        wf(k)=sin(k1*xax(k)); 
        if (xax(k)>=L) 
            wf(k,j)=a(j)*exp(i*k2*xax(k))+b(j)*exp(-i*k2*xax(k)); 
        end; 

    end; 
end; 

 

The problem is that there are only certain energies allowed for the bound states. You 

can’t just calculate a wavefunction for any energy, or you might get irreverent behavior 

like in the examples. For this model system the bound energies are 4.1237424×10-20 J 

and 1.496237×10-19 J, and the wavefunctions look like: 



 

6. For a 1D potential of the form: 

𝑉(𝑥) = −
ℏ2

2𝑚
Ω𝛿(𝑥) 

where Ω is a real and positive number. The energies for bound states must be negative, 
can you find their wavefunctions?  

Hint, you should consider wavefunctions in region I and II as having less energy than V. 

As a result, which wavefunction is appropriate, 𝑒𝑖𝑘𝑥 or 𝑒−𝑘𝑥? Also:  

lim
𝜀→0

∫ 𝜓(𝑥) ∙ 𝜕𝑥

𝜀

−𝜀

= 0 

as the area under the wavefunction must be finite.  

Answer: We start with 𝜓𝐼 = 𝐴𝑒𝑘𝑥 and 𝜓𝐼𝐼 = 𝐵𝑒−𝑘𝑥. As usual: 

𝜓𝐼(0) = 𝜓𝐼𝐼(0) and 
𝜕𝜓𝐼(0)

𝜕𝑥
=

𝜕𝜓𝐼𝐼(0)

𝜕𝑥
 which means 𝐴 = 𝐵 and 𝐴𝑘 = −𝐴𝑘. 

Next thing to do is to set up the S.E. and integrate it once: 

−
ℏ2

2𝑚

𝜕2

𝜕𝑥2
𝜓 −

ℏ2

2𝑚
Ω𝛿(𝑥)𝜓 = 𝐸𝜓 or better yet:  

𝜕2

𝜕𝑥2
𝜓(𝑥) + Ω ∙ 𝛿(𝑥) ∙ 𝜓(𝑥) = −

2𝑚

ℏ2
𝐸 ∙ 𝜓(𝑥) 

This rearranges as: 

𝜕2

𝜕𝑥2
𝜓(𝑥) = {−

2𝑚

ℏ2
∙ 𝐸 − Ω ∙ 𝛿(𝑥)} 𝜓(𝑥) 



We first integrate from the left to the right over a range 𝜀 that we will let go to 0: 

∫
𝜕2

𝜕𝑥2
𝜓(𝑥) ∙ 𝜕𝑥

𝜀

−𝜀

=
𝜕𝜓(+𝜀)

𝜕𝑥
−

𝜕𝜓(−𝜀)

𝜕𝑥
=

𝜕𝜓𝐼(0)

𝜕𝑥
−

𝜕𝜓𝐼𝐼(0)

𝜕𝑥
= 2𝐴𝑘 

where we used the fact that the wavefunction 𝜓(𝑥)to the left of 0 is 𝜓𝐼 and to the right is 

𝜓𝐼𝐼.This allows us to know that:  

∫ {−
2𝑚

ℏ2
∙ 𝐸 − Ω ∙ 𝛿(𝑥)} 𝜓(𝑥) ∙ 𝜕𝑥

𝜀

−𝜀

= −
2𝑚

ℏ2
∫ 𝐸𝜓(𝑥) ∙ 𝜕𝑥

𝜀

−𝜀

− ∫ Ω ∙ 𝛿(𝑥) ∙ 𝜓(𝑥) ∙ 𝜕𝑥

𝜀

−𝜀

 

Using the definition of a Dirac delta function means ∫ Ω ∙ 𝛿(𝑥) ∙ 𝜓(𝑥) ∙ 𝜕𝑥
𝜀

−𝜀
= Ω ∙ 𝜓(0) 

Therefore we now know that Ω ∙ 𝜓(0) = 2𝐴𝑘. Since 𝜓(0) = 𝐴 then we are left with: 

 
Ω

2
= 𝑘, which means that the wavefunctions are: 

𝜓𝐼 = 𝐴 ∙ 𝑒  
Ω
2

∙𝑥
 

and 

𝜓𝐼𝐼 = 𝐴 ∙ 𝑒− 
Ω
2

∙𝑥
 

 

7. Let’s say you have two unnormalized wavefunctions, left and right of the origin 

defined as: 

If x<0: 𝜓𝐼 = 𝑁𝑒  
Ω

2
∙𝑥

 and if x>0: 𝜓𝐼𝐼 = 𝑁𝑒− 
Ω

2
∙𝑥

 

What is the proper normalization constant N? 

Answer: 

We assume that the wavefunction is symmetric, meaning that: 

∫ 𝜓∗(𝑥) ∙ 𝜓(𝑥)𝜕𝑥

∞

0

= 𝑁2 ∫ 𝑒− 
Ω
2

∙𝑥𝑒− 
Ω
2

∙𝑥𝜕𝑥

∞

0

= 𝑁2 ∫ 𝑒− Ω∙𝑥 ∙ 𝜕𝑥

∞

0

=
1

2
 



Since ∫ 𝑒− Ω∙𝑥 ∙ 𝜕𝑥
∞

0
= −

1

Ω
𝑒− Ω∙𝑥|

0

∞

=
1

Ω
  we know then that 𝑁2 1

Ω
=

1

2
 and therefore 𝑁 = √

Ω

2
 

 

8. There is a branch of quantum mechanics called matrix mechanics. This is due to the fact that 

you can have eigenvalue equations in matrix form. Let’s say that we have an operator:  

Ω̂ = [
1 0.1

0.1 1
] 

and an eigenfunction of that operator: Φ = [
−1
1

].  

a. Can you show that: 

Ω̂Φ = 𝜔Φ 

where 𝜔 = 0.9? Hint: you might have to look up how to multiply a matrix by a column vector in 

Google. Also here is a useful identity: [
−ω ∙ a
ω ∙ a

] = ω [
−a
a

].    

b. The eigenvalue equation Ω̂Φ = 𝜔Φ  can be expressed as: 

(Ω̂ − 𝜔)Φ = 0 

such that, as in the previous example: 

Ω̂ − 𝜔 = [
1 − 𝜔 0.1

0.1 1 − 𝜔
] 

There is a theorem in mathematics that the eigenvalues 𝜔 of Ω̂Φ = 𝜔Φ can be found by: 

𝑑𝑒𝑡(Ω̂ − 𝜔) = 0 

where det is the determinant. Can you show that solving:  

𝑑𝑒𝑡 [
1 − 𝜔 0.1

0.1 1 − 𝜔
] = 0 



for 𝜔 provides a quadratic equation that allows you to solve 𝜔? Of course you will find two 

values, one of which is 0.9 as in pt. a. What is the other one? Hint: 𝑑𝑒𝑡 [
𝑎 𝑏
𝑐 𝑑

] = 𝑎𝑑 − 𝑐𝑏, and, 

the roots of a quadratic equation: 𝑎𝑥2 + 𝑏𝑐 + 𝑐 = 0 are 
−𝑏±√𝑏2−4𝑎𝑐

2𝑎
.      

c. Can you show that the eigenfunction Φ = [
1
1

] of Ω̂ = [
1 0.1

0.1 1
] has an eigenvalue 𝜔 = 1.1?   

Answer a.: 

Ω̂Φ = [
1 0.1

0.1 1
] [

−1
1

] = [
1 × −1 + 0.1 × 1
0.1 × −1 + 1 × 1

] = [
−0.9
0.9

] = 0.9 [
−1
1

]  

b. The determinant is: 

𝑑𝑒𝑡 [
1 − 𝜔 0.1

0.1 1 − 𝜔
] = (1 − 𝜔)2 − 0.1 × 0.1 = 0 

Expanding the first term yields: 

𝜔2 − 2𝜔 + 1 − 0.01 = 𝜔2 − 2𝜔 + 0.99 = 0 

The roots of 𝜔2 − 2𝜔 + 0.99 = 0 using 
−𝑏±√𝑏2−4𝑎𝑐

2𝑎
, where a=1, b=-2 and c=0.99: 

2 ± √4 − 3.96

2
= 1 ± 0.1 = 0.9, 1.1 

Thus the other eigenvalue is 1.1 

c. If we solve as before: 

[
1 0.1

0.1 1
] [

1
1

] = [
1 × 1 + 0.1 × 1
0.1 × 1 + 1 × 1

] = [
1.1
1.1

] = 1.1 [
1
1

] 

 


