
Chem 542 Problem Set 1 

1. Please show that the wave equation: ∇2ℇ =
1

c2

∂2

∂t2 ℇ can be derived from Maxwell’s 

equations:  

∇ × ℇ = −
∂B

∂t
 

∇ × B =
1

c2

∂ℇ

∂t
 

∇ ∙ ℇ = 0 

∇ ∙ B = 0 

Hint, you should start with ∇ × (∇ × ℇ), and you might need to know that, for a function F:  

∇ × (
∂F

∂t
) =

∂

∂t
(∇ × F)  and  ∇ × ∇ × F = ∇(∇ ∙ F) − ∇2 ∙ F. 

You don’t need to know this, but if you forgot a “divergence” is: ∇ ∙ F = (
𝜕

∂x
+

𝜕

∂y
+

𝜕

∂z
) F, “del 

squared” is: ∇ ∙ ∇ ∙ F = ∇2 ∙ F = (
∂2

∂x2 +
∂2

∂𝑦2 +
∂2

∂z2) F, while a curl is: ∇ × F = (
∂Fz

∂y
−

∂Fy

∂z
) x +

(
∂Fx

∂z
−

∂Fz

∂x
) y + (

∂Fy

∂x
−

∂Fx

∂y
) z  

Answer: We start with: ∇ × (∇ × ℇ) = ∇ × (−
∂B

∂t
). Using the identity we can then show the 

above is equal to: −
∂

∂t
(∇ × B) = −

∂

∂t

1

c2

∂ℇ

∂t
= −

1

c2

∂2

∂t2 ℇ. We can also use the second identity to 

show ∇ × (∇ × ℇ) = ∇(∇ ∙ ℇ) − ∇2ℇ. Since ∇ ∙ ℇ = 0, we are left with −∇2ℇ. Consequently, on the 

left and right side of is: ∇ × (∇ × ℇ) = −∇2ℇ = −
1

c2

∂2

∂t2 ℇ which reduces to the wave equation: 

∂2

∂x2
ℇ =

1

c2

∂2

∂t2
ℇ 

2. The Dirac delta function 𝛿(𝑥 − 𝑎) has the following property when inserted into an 

integral: 

∫ 𝑓(𝑥)𝛿(𝑥 − 𝑎)𝜕𝑥

∞

−∞

= 𝑓(𝑎) 

Using the above, can you show that: 



∫ 𝑒𝑖∙(𝑘′−𝑘)∙𝑥 ∙ 𝜕𝑥

∞

−∞

= 2𝜋𝛿(𝑘 − 𝑘′) 

To answer the question, you need to start with the definition of a Fourier transform: 

𝐹(𝜆) =
1

2𝜋
∫ 𝑒𝑖∙𝜆∙𝑥 ∙ 𝑓(𝑥) ∙ 𝜕𝑥

∞

−∞

 

And you also need to know that the inverse transform is: 

𝑓(𝑥) = ∫ 𝑒−𝑖∙𝜆∙𝑥 ∙ 𝐹(𝜆) ∙ 𝜕𝜆

∞

−∞

 

Hint: First, the Fourier transform has an x and  in it- these need to be changed into 

other variables to be applicable to the question (note that the question has k’s in it). 

Once you do that you can see that you should insert the Dirac delta function for 𝑓(𝑥) in 

the Fourier transform function and then put that into the inverse transform. 

Answer: Starting with the equation for the Fourier transform:  

𝐹(𝜆) =
1

2𝜋
∫ 𝑒𝑖∙𝜆∙𝑥 ∙ 𝑓(𝑥) ∙ 𝜕𝑥

∞

−∞

 

First insert  𝑘 = 𝑥, 𝑓(𝑥) = 𝛿(𝑘 − 𝑘′), and 𝜆 = 𝑥: 

𝐹(𝑥) =
1

2𝜋
∫ 𝑒𝑖∙𝑥∙𝑘 ∙ 𝛿(𝑘 − 𝑘′) ∙ 𝜕𝑘

∞

−∞

=
1

2𝜋
𝑒𝑖∙𝑥∙𝑘′

 

which we solved using the definition of what a Dirac Delta function. 

Next we insert this into the inverse transform ∫ 𝑒−𝑖∙𝑥∙𝑘 ∙ 𝐹(𝑥) ∙ 𝜕𝑥
∞

−∞
, and note that we 

have to set this equal to 𝑓(𝑥) = 𝛿(𝑘 − 𝑘′): 

𝑓(𝑥) = 𝛿(𝑘 − 𝑘′) = ∫ 𝑒−𝑖∙𝑥∙𝑘 ∙
1

2𝜋
𝑒𝑖∙𝑥∙𝑘′

∙ 𝜕𝑥

∞

−∞

=
1

2𝜋
∫ 𝑒−𝑖∙𝑘∙𝑥+𝑖𝑘′𝑥 ∙ 𝜕𝑥

∞

−∞

 

A little simplification yields:  

2𝜋𝛿(𝑘 − 𝑘′) = ∫ 𝑒𝑖∙(𝑘′−𝑘)∙𝑥 ∙ 𝜕𝑥

∞

−∞

 



3. Powder X-ray diffraction (PXRD) is a  method of 

characterizing nanoparticles of a crystalline material. It 

is the result of the coherent scattering of high energy 

(short wavelength) photons off the regular lattice planes 

of a solid powdered material. Essentially, the 

nanoparticles act like diffraction gratings. Shown here is 

the PXRD of gold nanoparticles, where the resonances 

provide information on the structure of the metal. The 

“powder” in PXRD implies that there is no overall 

orientation of the crystals with the incoming X-ray beam. 

Let’s analyze a PXRD spectrum to start applying some 

programming skills and learn a useful relationship, 

specifically the Debye equation that describes PXRD 

intensity: 

𝐼(𝑠) ≈ ∑ ∑ 𝑓𝑚(𝜃)𝑓𝑛(𝜃)
𝑠𝑖𝑛(2𝜋𝑠𝑑𝑚𝑛)

2𝜋𝑠𝑑𝑚𝑛
𝑛𝑚

 

where 𝐶(𝜃) is a function that accounts for intensity 

variations due to geometry, m and n are atomic labels, 

𝑓(𝜃) is the atomic scattering factor, 𝑑𝑚𝑛 is the distance 

between atomic pairs, and 𝑠 =
2𝑠𝑖𝑛(𝜃)

𝜆
 . A typical operating wavelength in XRD 

diffractometers is 𝜆 = 1.5406 Å 

For this question simply write a code that solves the Debye equation for Au 

nanoparticles using the coordinates for small (2.3 nm) and larger (4.6 nm) nanoparticles 

of Au metal that are linked on the website. For this problem submit (a) your code, (b) 

the results, and (c) suggest a reason that your spectra perfectly match the bulk one 

shown above. Hint: how does the large vs. small nanoparticle XRD patterns differ? 

Then apply that reasoning to 

describe the particles that were 

used to measure the PXRD 

pattern above. 

Some Matlab hints are provided 

in the appendix.  

 

 



Answer: 

a,b) Here is my code for the smaller particle, followed by the results. 

load coords_small.txt; 
xyz=coords_small; 
N=max(size(xyz)); 
lam=1.5406; 
spectral_axis=10:0.1:85; 
numpoints=max(size(spectral_axis)); 
for xth=1:numpoints 
    %initialize variables 
    pxrd(xth)=0;                         %this will be the PXRD spectrum 
    twoth(xth)=spectral_axis(xth);  %x-axis of the PXRD spectrum 
    theta=twoth(xth)/2/360*2*pi;    %convert 2*angle from degrees to radians 
    s=2*sin(theta)/lam;             %s for the Debye equation 
    q=4*pi/lam*sin(theta);           %q for the scattering amplitude 

  
    %f1 is gold's scattering amplitude, taken from 

http://lampx.tugraz.at/~hadley/ss1/crystaldiffraction/atomicformfactors/formf

actors.php 
    f1=16.8819*exp(-0.4611*(q/4/pi)^2)+18.5913*exp(-

8.6216*(q/4/pi)^2)+25.5582*exp(-1.4826*(q/4/pi)^2)+5.86*exp(-

36.3956*(q/4/pi)^2)+12.0658; 
    for i=1:N-1 
        for j=i+1:N 
            d=sqrt((xyz(i,1)-xyz(j,1))^2+(xyz(i,2)-xyz(j,2))^2+(xyz(i,3)-

xyz(j,3))^2); 
            pxrd(xth)=pxrd(xth)+f1*f1*sin(2*pi*s*d)/2/pi/s/d; 
        end; 
    end;  
end; 
figure; 
plot(twoth,pxrd,'b'); 

 

c) The nanoparticles have resonances that are wider. The smaller one is the widest, 

which means that the powder pattern shown in the question must be from very large Au 

particles.  



4. For the step potential: 

 

a) What is the formula for the 

reflectance for an electron with E<V0? 

Hint: Reflectance is the amplitude of 

the left-scattering “B” wave divided by 

the amplitude of the incoming “A” wave, i.e. 
|𝐵|2

|𝐴|2.  

b) What is the formula for the reflectance of an electron with E>V0? 

c) Please plot |𝜓|2 for E=1/2V0. Hint: you can always set the “A” constant equal to 1.0 

and then “B” and “C” should be easy to define relative to that. Note some Matlab scripts 

are attached to assist. Also you should be able to simplify in region 1 into a 

trigonometric representation such as |ψI|
2 = 2 − 4 ∙ sin(k1x) cos(k1x) = 2 − 2 ∙ sin(2k1x). 

Region 2 will look more like an exponential decay.  

d) Please plot |𝜓|2 for E=2V0. Hint, |ψII|
2 will be a constant. 

Answer: First we note that a wavefunction in region I is :𝜓𝐼 = 𝐴𝑒𝑖𝑘1𝑥 + 𝐵𝑒−𝑖𝑘1𝑥 and in 

region II: 𝜓𝐼𝐼 = 𝐶𝑒𝑖𝑘2𝑥, where 𝑘1 =
√2𝑚𝐸

ℏ
 and 𝑘2 =

√2𝑚(𝐸−𝑉0)

ℏ
. 

At x=0 the wavefunctions must be smooth and continuous: 𝐴𝑒𝑖𝑘10 + 𝐵𝑒−𝑖𝑘10 = 𝐶𝑒𝑖𝑘20 or:  

𝐴 + 𝐵 = 𝐶 

The continuous stipulation means: 𝐴𝑖𝑘1𝑒𝑖𝑘10 − 𝐵𝑖𝑘1𝑒−𝑖𝑘10 = 𝐶𝑖𝑘2𝑒𝑖𝑘20 or: 

 𝐴𝑘1 − 𝐵𝑘1 = 𝐶𝑘2 

Since the reflection is: 
|𝐵|2

|𝐴|2
 we need to relate A & B through C. To do so look at the 

second relationship: 𝐴𝑘1 − 𝐵𝑘1 = 𝐶𝑘2 which shows that 𝐵 =
𝐴𝑘1−𝐶𝑘2

𝑘1
. We put this into  

𝐴 + 𝐵 = 𝐶 to yield 𝐴 +
𝐴𝑘1−𝐶𝑘2

𝑘1
= 𝐶 and thus 2𝐴𝑘1 = 𝐶(𝑘1 + 𝑘2) and 𝐴 =

𝐶(𝑘1+𝑘2)

2𝑘1
. 

Likewise 𝐴 =
𝐵𝑘1+𝐶𝑘2

2𝑘1
 and thus 𝐴 + 𝐵 = 𝐶 yields 𝐵 =

𝐶(𝑘1−𝑘2)

2𝑘1
 and now we see that: 

𝐵

𝐴
=

𝐶(𝑘1−𝑘2)

2𝑘1

2𝑘1

𝐶(𝑘1+𝑘2)
=

𝑘1−𝑘2

𝑘1+𝑘2
  



a) Now if E<V0, then 𝑘2 =
√2𝑚(𝐸−𝑉0)

ℏ
=

√−2𝑚(𝑉0−𝐸)

ℏ
= 𝑖

√2𝑚(𝑉0−𝐸)

ℏ
. Let’s redefine 𝑘2 = 𝑖𝑘2

′  

with: 𝑘2
′ =

√2𝑚(𝑉0−𝐸)

ℏ
. As a result, the reflectance is: 

|𝐵|2

|𝐴|2
=

(𝑘1 − 𝑖𝑘2
′ )∗(𝑘1 − 𝑖𝑘2

′ )

(𝑘1 + 𝑖𝑘2
′ )∗(𝑘1 + 𝑖𝑘2

′ )
=

(𝑘1 + 𝑖𝑘2
′ )(𝑘1 − 𝑖𝑘2

′ )

(𝑘1 − 𝑖𝑘2
′ )(𝑘1 + 𝑖𝑘2

′ )
=

𝑘1
2 + 𝑘2

2

𝑘1
2 + 𝑘2

2 = 1 

 

b) If E>V0 then 
𝐵

𝐴
=

√2𝑚𝐸−√2𝑚(𝐸−𝑉0)

√2𝑚𝐸+√2𝑚(𝐸−𝑉0)
, which can be simplified by 

𝐵

𝐴
=

√𝐸−√𝐸−𝑉0

√𝐸+√𝐸−𝑉0
.  

Thus, 
|𝐵|2

|𝐴|2 =
(√𝐸−√𝐸−𝑉0)

2

(√𝐸+√𝐸−𝑉0)
2. 

 

c) For E=1/2V0 we can set A=1, and then 𝐵 =
𝑘1−𝑖𝑘2

′

𝑘1+𝑖𝑘2
′ =

√𝑚𝑉0−𝑖√𝑚𝑉0

√𝑚𝑉0+𝑖√𝑚𝑉0
=

1−𝑖

1+𝑖
. You can 

simplify this by multiplying top and bottom by 1 − 𝑖: 𝐵 =
1−𝑖

1+𝑖
(

1−𝑖

1−𝑖
) =

1−𝑖−𝑖+𝑖2

1+𝑖−𝑖−𝑖2 =
−2𝑖

2
= −𝑖. 

As a result, the proper wavefunction is 𝜓𝐼 = 𝑒𝑖𝑘1𝑥 − 𝑖 ∙ 𝑒−𝑖𝑘1𝑥. We can simplify it using: 

𝑒𝑖𝑘1𝑥 = cos (𝑘1𝑥) + 𝑖 ∙ 𝑠𝑖𝑛(𝑘1𝑥) and 𝑒−𝑖𝑘1𝑥 = cos(𝑘1𝑥) − 𝑖 ∙ 𝑠𝑖𝑛(𝑘1𝑥), which gives us: 

𝜓𝐼 = cos(𝑘1𝑥) + 𝑖 ∙ 𝑠𝑖𝑛(𝑘1𝑥) − 𝑖{cos(𝑘1𝑥) − 𝑖 ∙ 𝑠𝑖𝑛(𝑘1𝑥)}

= cos(𝑘1𝑥) − 𝑠𝑖𝑛(𝑘1𝑥) + 𝑖(𝑠𝑖𝑛(𝑘1𝑥) − cos(𝑘1𝑥)) 

 Now when you take the absolute value of this: 

 {cos(𝑘1𝑥) − 𝑠𝑖𝑛(𝑘1𝑥) + 𝑖 ∙ 𝑠𝑖𝑛(𝑘1𝑥) − 𝑖 ∙ cos(𝑘1𝑥)} ∙ {cos(𝑘1𝑥) − 𝑠𝑖𝑛(𝑘1𝑥) − 𝑖 ∙ 𝑠𝑖𝑛(𝑘1𝑥) +

𝑖 ∙ cos(𝑘1𝑥)} 

It is: cos2(𝑘1𝑥) + 𝑠𝑖𝑛2(𝑘1𝑥) − 2 ∙ cos(𝑘1𝑥) ∙ 𝑠𝑖𝑛(𝑘1𝑥) + 𝑠𝑖𝑛2(𝑘1𝑥) + cos2(𝑘1𝑥) − 2 ∙

𝑠𝑖𝑛(𝑘1𝑥) ∙ cos(𝑘1𝑥) = 

|𝜓𝐼|2 = 2 − 4 ∙ 𝑠𝑖𝑛(𝑘1𝑥) ∙ cos(𝑘1𝑥) = 2 − 2 ∙ 𝑠𝑖𝑛(2𝑘1𝑥) 

For which we used the identity 𝑠𝑖𝑛(2𝑥) = 2 sin(𝑥) cos (𝑥). 

For the second region we start with: 𝐴 + 𝐵 = 𝐶, and if we let A=1 and we already know 

that 𝐵 = −𝑖, then 𝐶 = 1 − 𝑖. As a result, 𝜓𝐼𝐼 = (1 − 𝑖)𝑒𝑖𝑘2𝑥. As 𝑘2 = 𝑖𝑘2
′  with 𝑘2

′ =

√2𝑚(𝑉0−𝐸)

ℏ
, then we have 𝜓𝐼𝐼 = (1 − 𝑖)𝑒−𝑘2

′ 𝑥 

As a result,  |𝜓𝐼𝐼|2 = {(1 − 𝑖)𝑒−𝑘2
′ 𝑥}

∗
{(1 − 𝑖)𝑒−𝑘2

′ 𝑥} = (1 + 𝑖)(1 − 𝑖)𝑒−2𝑘2
′ 𝑥 = 2𝑒−2𝑘2

′ 𝑥 



We can plot this using Matlab as: 

hbar=1.0546e-34;  
m=9.109e-31;  
en=1.602e-19;  
v=en*2; 
k1=sqrt(2*m*en)/hbar; k2=sqrt(2*m*(v-en))/hbar;  
for x2=1:200  
    x(x2)=(x2-100)*0.1e-10;  
    if (x(x2)<=0)  
        wfsq(x2)=2-2*sin(2*k1*x(x2));  
    end; 
    if (x(x2)>0)  
        wfsq(x2)=2*exp(-2*k2*x(x2));  
    end; 
end; 
plot(x,wfsq); 

 

d) If E=2V0 , and we set A=1, then 𝐵 =
√2𝑉0−√𝑉0

√2𝑉0+√𝑉0
=

√2−1

√2+1
. First, we can simplify the 

expression:  

|𝜓𝐼|2 = (𝑒𝑖𝑘1𝑥 + 𝐵𝑒−𝑖𝑘1𝑥)
∗
(𝑒𝑖𝑘1𝑥 + 𝐵𝑒−𝑖𝑘1𝑥) = (𝑒−𝑖𝑘1𝑥 + 𝐵𝑒𝑖𝑘1𝑥)(𝑒𝑖𝑘1𝑥 + 𝐵𝑒−𝑖𝑘1𝑥)

= 𝑒−𝑖𝑘1𝑥𝑒𝑖𝑘1𝑥 + 𝑒−𝑖𝑘1𝑥𝐵𝑒−𝑖𝑘1𝑥 + 𝐵∗𝑒𝑖𝑘1𝑥𝑒𝑖𝑘1𝑥 + 𝐵𝑒𝑖𝑘1𝑥𝐵𝑒−𝑖𝑘1𝑥

= 𝑒−𝑖𝑘1𝑥+𝑖𝑘1𝑥 + 𝐵𝑒−𝑖𝑘1𝑥−𝑖𝑘1𝑥 + 𝐵𝑒𝑖𝑘1𝑥+𝑖𝑘1𝑥 + 𝐵2𝑒𝑖𝑘1𝑥−𝑖𝑘1𝑥

= 𝑒0 + 𝐵𝑒−2𝑖𝑘1𝑥 + 𝐵𝑒2𝑖𝑘1𝑥 + 𝐵2𝑒0 = 1 + 𝐵2 + 𝐵𝑒−2𝑖𝑘1𝑥 + 𝐵𝑒2𝑖𝑘1𝑥 

Here we recognize that 𝑒−2𝑖𝑘1𝑥 + 𝑒2𝑖𝑘1𝑥 = 2 ∙ 𝑐𝑜𝑠(2𝑘1𝑥) which gives a final result of: 

|𝜓𝐼|2 = 1 + 𝐵2 + 2𝐵 ∙ 𝑐𝑜𝑠(2𝑘1𝑥) 

You could have tried to solve this problem using entirely trigonometric functions as 

follows:  



|𝜓𝐼|2 = (𝑒𝑖𝑘1𝑥 + 𝐵𝑒−𝑖𝑘1𝑥)
∗
(𝑒𝑖𝑘1𝑥 + 𝐵𝑒−𝑖𝑘1𝑥) = (𝑒−𝑖𝑘1𝑥 + 𝐵𝑒𝑖𝑘1𝑥)(𝑒𝑖𝑘1𝑥 + 𝐵𝑒−𝑖𝑘1𝑥)

= {cos(𝑘1𝑥) − 𝑖 ∙ 𝑠𝑖𝑛(𝑘1𝑥) + 𝐵 cos(𝑘1𝑥) + 𝐵 ∙ 𝑖 ∙ 𝑠𝑖𝑛(𝑘1𝑥)}{cos(𝑘1𝑥) + 𝑖

∙ 𝑠𝑖𝑛(𝑘1𝑥) + 𝐵 cos(𝑘1𝑥) − 𝐵 ∙ 𝑖 ∙ 𝑠𝑖𝑛(𝑘1𝑥)}

= 1 + 𝐵2 + 2𝐵{cos2(𝑘1𝑥) − 𝑠𝑖𝑛2(𝑘1𝑥)} = 1 + 𝐵2 + 2𝐵 ∙ 𝑐𝑜𝑠(2𝑘1𝑥) 

As for region II we have: |𝜓𝐼𝐼|2 = {(1 + 𝐵)𝑒𝑖𝑘2𝑥}
∗
{(1 + 𝐵)𝑒𝑖𝑘2𝑥} = 

(𝑒−𝑖𝑘2𝑥 + 𝐵𝑒−𝑖𝑘2𝑥)(𝑒𝑖𝑘2𝑥 + 𝐵𝑒𝑖𝑘2𝑥) = 1 + 2𝐵 + 𝐵2 

5. For the double square well potential shown here: 

Note that 𝑘1 =
√2𝑚𝐸

ℏ
 and 𝑘2 =

√2𝑚(𝑉0−𝐸)

ℏ
 

a) Determine what should be reasonable 

wavefunctions in regions 1, 2 and 3. Hint: Good 

candidates include 𝑒−𝑘𝑥 + 𝑒𝑘𝑥, sin(𝑘(𝑥 − 𝑥0)), and 

cos(𝑘(𝑥 − 𝑥0)) weighted with appropriate constants, 

i.e. “A”, “B” etc. 

b) Show that the energy can be calculated for an 

even parity solution using the transcendental 

equation: 

𝑘1 ∙ 𝑐𝑜𝑡𝑎𝑛(𝑘1(𝑎 − 𝑏)) = −𝑘2 ∙ 𝑡𝑎𝑛ℎ (𝑘2𝑏) 

 

And that the odd parity solution is: 

𝑘1 ∙ 𝑐𝑜𝑡𝑎𝑛(𝑘1(𝑎 − 𝑏)) = −𝑘2 ∙ 𝑐𝑜𝑡ℎ (𝑘2𝑏) 

 

Hint: First, these questions are all about developing an equation with k1 and k2 without 

the “A” and “B” coefficients etc. A good way to do that is to specify that the 

wavefunctions must be smooth and continuous at each boundary, i.e.: 

∂ψI(boundary)
∂x

ψI(boundary)
=

∂ψII(boundary)
∂x

ψII(boundary)
 

Here are some useful identities:  𝑡𝑎𝑛ℎ(x)  =  
𝑠𝑖𝑛ℎ(x)

𝑐𝑜𝑠ℎ(x)
 =

ex−e−x

ex+e−x  and 𝑐𝑜𝑡ℎ(𝑥)  =  
𝑐𝑜𝑠ℎ(𝑥)

𝑠𝑖𝑛ℎ(𝑥)
 =

𝑒𝑥+𝑒−𝑥

𝑒𝑥−𝑒−𝑥
 



c) Show that if 𝑉0 → ∞ then you get the regular particle in a box energy with an added 

factor of degeneracy: 

𝐸𝑛 =
𝜋2ℏ2𝑛2

2𝑚𝐿2
 where n=1, 2, 3… and L=b-a, the length of the “trap”.  

Answer: 

a) First, we have to define the wavefunctions in each of the three regions, with k2 being 

imaginary since the energy is below the potential. This is actually made somewhat easy 

because we know that the wavefunction has to be 0 at point -a, which allows us to use a 

sine function: 

𝜓𝐼 = 𝐴 ∙ 𝑠𝑖𝑛(𝑘1(𝑥 + 𝑎)) 

Region II will be the usual decaying exponentials: 

𝜓𝐼𝐼 = 𝐵 ∙ 𝑒−𝑘2𝑥 + 𝐶 ∙ 𝑒𝑘2𝑥 

And region III will be: 

𝜓𝐼𝐼𝐼 = 𝐷 ∙ 𝑠𝑖𝑛(𝑘1(𝑥 − 𝑎)) 

b) At the boundary x=-b we will stipulate smooth and continuous conditions: 

𝜓𝐼(−𝑏) = 𝜓𝐼𝐼(−𝑏) and 
𝜕𝜓𝐼(−𝑏)

𝜕𝑥
=

𝜕𝜓𝐼𝐼(−𝑏)

𝜕𝑥
 which means: 

𝐴 ∙ 𝑠𝑖𝑛(𝑘1(𝑎 − 𝑏)) = 𝐵 ∙ 𝑒𝑘2𝑏 + 𝐶 ∙ 𝑒−𝑘2𝑏 

and  

𝐴 ∙ 𝑘1 ∙ 𝑐𝑜𝑠(𝑘1(𝑎 − 𝑏)) = −𝐵 ∙ 𝑘2 ∙ 𝑒𝑘2𝑏 + 𝐶 ∙ 𝑘2 ∙ 𝑒−𝑘2𝑏 

We can divide the two relationships to show: 

𝜕𝜓𝐼(−𝑏)
𝜕𝑥

𝜓𝐼(−𝑏)
=

𝜕𝜓𝐼𝐼(−𝑏)
𝜕𝑥

𝜓𝐼𝐼(−𝑏)
=

𝐴 ∙ 𝑘1 ∙ 𝑐𝑜𝑠(𝑘1(𝑎 − 𝑏))

𝐴 ∙ 𝑠𝑖𝑛(𝑘1(𝑎 − 𝑏))
=

𝐶 ∙ 𝑘2 ∙ 𝑒−𝑘2𝑏 − 𝐵 ∙ 𝑘2 ∙ 𝑒𝑘2𝑏

𝐵 ∙ 𝑒𝑘2𝑏 + 𝐶 ∙ 𝑒−𝑘2𝑏
 

Some simplification yields: 

𝑘1 ∙ 𝑐𝑜𝑡𝑎𝑛(𝑘1(𝑎 − 𝑏)) = 𝑘2
𝐶∙𝑒−𝑘2𝑏−𝐵∙𝑒𝑘2𝑏

𝐵∙𝑒𝑘2𝑏+𝐶∙𝑒−𝑘2𝑏       (1) 

When you do the same for the 2nd boundary condition you find: 

𝜓𝐼𝐼(𝑏) = 𝜓𝐼𝐼𝐼(𝑏) and 
𝜕𝜓𝐼𝐼(𝑏)

𝜕𝑥
=

𝜕𝜓𝐼𝐼𝐼(𝑏)

𝜕𝑥
 which means: 



𝐷 ∙ 𝑠𝑖𝑛(𝑘1(𝑏 − 𝑎)) = 𝐵 ∙ 𝑒−𝑘2𝑏 + 𝐶 ∙ 𝑒𝑘2𝑏 

and  

𝐷 ∙ 𝑘1 ∙ 𝑐𝑜𝑠(𝑘1(𝑏 − 𝑎)) = −𝐵 ∙ 𝑘2 ∙ 𝑒−𝑘2𝑏 + 𝐶 ∙ 𝑘2 ∙ 𝑒𝑘2𝑏 

We can divide the two relationships to show: 

𝜕𝜓𝐼𝐼𝐼(𝑏)
𝜕𝑥

𝜓𝐼𝐼𝐼(𝑏)
=

𝜕𝜓𝐼𝐼(𝑏)
𝜕𝑥

𝜓𝐼𝐼(𝑏)
=

𝐷 ∙ 𝑘1 ∙ 𝑐𝑜𝑠(𝑘1(𝑏 − 𝑎))

𝐷 ∙ 𝑠𝑖𝑛(𝑘1(𝑏 − 𝑎))
=

𝐶 ∙ 𝑘2 ∙ 𝑒𝑘2𝑏 − 𝐵 ∙ 𝑘2 ∙ 𝑒−𝑘2𝑏

𝐵 ∙ 𝑒−𝑘2𝑏 + 𝐶 ∙ 𝑒𝑘2𝑏
 

Some simplification yields: 

𝑘1 ∙ cotan(𝑘1(𝑏 − 𝑎)) = 𝑘2

𝐶 ∙ 𝑒𝑘2𝑏 − 𝐵 ∙ 𝑒−𝑘2𝑏

𝐵 ∙ 𝑒−𝑘2𝑏 + 𝐶 ∙ 𝑒𝑘2𝑏
 

Since cotan(−𝑥) = −cotan (𝑥) we can say the following:  

−𝑘1 ∙ 𝑐𝑜𝑡𝑎𝑛(𝑘1(𝑎 − 𝑏)) = 𝑘2
𝐶∙𝑒𝑘2𝑏−𝐵∙𝑒−𝑘2𝑏

𝐵∙𝑒−𝑘2𝑏+𝐶∙𝑒𝑘2𝑏       (2) 

Now if you equate both the right-hand sides of (1) and (2): 

−𝑘2

𝐶 ∙ 𝑒−𝑘2𝑏 − 𝐵 ∙ 𝑒𝑘2𝑏

𝐵 ∙ 𝑒𝑘2𝑏 + 𝐶 ∙ 𝑒−𝑘2𝑏
= 𝑘2

𝐶 ∙ 𝑒𝑘2𝑏 − 𝐵 ∙ 𝑒−𝑘2𝑏

𝐵 ∙ 𝑒−𝑘2𝑏 + 𝐶 ∙ 𝑒𝑘2𝑏
 

Divide out k2: 

−
𝐶 ∙ 𝑒−𝑘2𝑏 − 𝐵 ∙ 𝑒𝑘2𝑏

𝐵 ∙ 𝑒𝑘2𝑏 + 𝐶 ∙ 𝑒−𝑘2𝑏
=

𝐶 ∙ 𝑒𝑘2𝑏 − 𝐵 ∙ 𝑒−𝑘2𝑏

𝐵 ∙ 𝑒−𝑘2𝑏 + 𝐶 ∙ 𝑒𝑘2𝑏
 

Now we can simplify via: 

−(𝐶 ∙ 𝑒−𝑘2𝑏 − 𝐵 ∙ 𝑒𝑘2𝑏)(𝐵 ∙ 𝑒−𝑘2𝑏 + 𝐶 ∙ 𝑒𝑘2𝑏) = (𝐶 ∙ 𝑒𝑘2𝑏 − 𝐵 ∙ 𝑒−𝑘2𝑏)(𝐵 ∙ 𝑒𝑘2𝑏 + 𝐶 ∙ 𝑒−𝑘2𝑏) 

When you multiply this out, on the left:  

−(𝐶 ∙ 𝑒−𝑘2𝑏 − 𝐵 ∙ 𝑒𝑘2𝑏)(𝐵 ∙ 𝑒−𝑘2𝑏 + 𝐶 ∙ 𝑒𝑘2𝑏) = −𝐶𝐵 ∙ 𝑒−2𝑘2𝑏 − 𝐶2 + 𝐵2 + 𝐵𝐶 ∙ 𝑒2𝑘2𝑏 

and on the right: 

(𝐶 ∙ 𝑒𝑘2𝑏 − 𝐵 ∙ 𝑒−𝑘2𝑏)(𝐵 ∙ 𝑒𝑘2𝑏 + 𝐶 ∙ 𝑒−𝑘2𝑏) = 𝐶𝐵 ∙ 𝑒2𝑘2𝑏 + 𝐶2 − 𝐵2 − 𝐶𝐵 ∙ 𝑒−2𝑘2𝑏 

Put them together to show: 

−𝐶𝐵 ∙ 𝑒−2𝑘2𝑏 − 𝐶2 + 𝐵2 + 𝐵𝐶 ∙ 𝑒2𝑘2𝑏 = 𝐶𝐵 ∙ 𝑒2𝑘2𝑏 + 𝐶2 − 𝐵2 − 𝐶𝐵 ∙ 𝑒−2𝑘2𝑏 

+2𝐵2 = +2𝐶2 



And you are left with:  

+2𝐵2 = +2𝐶2 

𝐵2 = 𝐶2 

Now there are two sets of solutions, if 𝐵 = −𝐶 (odd parity) and you plug that into (1): 

(
1

𝑘1
) ∙ 𝑐𝑜𝑡𝑎𝑛(𝑘1(𝑎 − 𝑏)) = 𝑘2

−𝑒−𝑘2𝑏 − 𝑒𝑘2𝑏

𝑒𝑘2𝑏 − 𝑒−𝑘2𝑏
= −𝑘2

𝑒𝑘2𝑏 + 𝑒−𝑘2𝑏

𝑒𝑘2𝑏 − 𝑒−𝑘2𝑏
 

Since 𝑐𝑜𝑡ℎ(x)  =  
𝑐𝑜𝑠ℎ(x)

𝑠𝑖𝑛ℎ(x)
 =

ex+e−x

ex−e−x 

𝑘1 ∙ 𝑐𝑜𝑡𝑎𝑛(𝑘1(𝑎 − 𝑏)) = −𝑘2 ∙ 𝑐𝑜𝑡ℎ (𝑘2𝑏) 

If we use 𝐵 = 𝐶 (even parity) and you plug that into (1): 

𝑘1 ∙ 𝑐𝑜𝑡𝑎𝑛(𝑘1(𝑎 − 𝑏)) = 𝑘2

𝑒−𝑘2𝑏 − 𝑒𝑘2𝑏

𝑒𝑘2𝑏 + 𝑒−𝑘2𝑏
= −𝑘2

𝑒𝑘2𝑏 − 𝑒−𝑘2𝑏

𝑒𝑘2𝑏 + 𝑒−𝑘2𝑏
 

Since 𝑡𝑎𝑛ℎ(𝑥)  =  
𝑠𝑖𝑛ℎ(𝑥)

𝑐𝑜𝑠ℎ(𝑥)
 =

𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥 

𝑘1 ∙ 𝑐𝑜𝑡𝑎𝑛(𝑘1(𝑎 − 𝑏)) = −𝑘2 ∙ 𝑡𝑎𝑛ℎ (𝑘2𝑏) 

 

c) If 𝑉0 → ∞ then 𝑘2 → ∞. If we plug that into our transcendental equation: 

(
1

𝑘1
) ∙ 𝑡𝑎𝑛(𝑘1(𝑎 − 𝑏)) = (

−1

𝑘2
) tanh(𝑘2𝑏) = 0 

The function tan is 0 when its argument is n.  Thus, 

𝑘1(𝑎 − 𝑏) =
√2𝑚𝐸

ℏ
(𝑎 − 𝑏) = 𝑛𝜋 

Solving for E yields: √2𝑚𝐸 =
𝑛𝜋ℏ

(𝑎−𝑏)
 and thus: 2𝑚𝐸 =

𝑛2𝜋2ℏ2

2𝑚𝐿2
, where L=b-a (the fact that it 

is squared removed the negative sign from this definition of length). 
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Appendix: Example Matlab scripts 

a. Plotting wavefunctions: 

hbar=1.0546e-34;  
m=9.109e-31;  
en=1.602e-19;  
v=en*2; 
k1=sqrt(2*m*en)/hbar;  

k2=sqrt(2*m*(v-en))/hbar;  

B=(sqrt(2)-1)/(sqrt(2)+1); 
for x2=1:200  
    x(x2)=(x2-100)*0.1e-10;  
    if (x(x2)<=0)  
        wfsq(x2)=2-2*sin(2*k1*x(x2)); 

        wfsq2(x2)=1+B*B+2*B*cos(2*k1*x(x2));   
    end; 
    if (x(x2)>0)  
        wfsq(x2)=2*exp(-2*k2*x(x2));  

        wfsq2(x2)=(1+B)^2; 
    end; 
end; 
plot(x,wfsq,'b'); 

hold on; 

plot(x,wfsq2,'r'); 

 

b. Debye example and Au scattering factor: 

The Au scattering factor is solved using a combination of three exponential functions 
and depends on the wavelength of light (1.5406 Å in most XRD spectrometers) as 
shown here: 

𝑓𝑎𝑢 = ∑ 𝐴𝑖 ∙ 𝑒𝑥𝑝 (−𝑏𝑖 (
𝑞

4𝜋
)

2

)

4

𝑖=1

+ 𝑐 

where A, b, and c are constants from the website and 𝑞 =
4𝜋

𝜆
𝑠𝑖𝑛(𝜃). 

Below is an example script that will help you initialize your Matlab script and calculate 
the PXRD spectra of the two nanoparticles (small and large), the coordinates for which 
are linked in the assignment.  
 
load coords_small.txt; 
xyz=coords_small; 
N=max(size(xyz)); 
lam=1.5406;                         %wavelength in angstroms 
spectral_axis=10:0.1:85;            %The PXRD angle (x) axis 
numpoints=max(size(spectral_axis)); %The number of datapoints 
for xth=1:numpoints 
    %initialize variables 
    pxrd(xth)=0;                    %this will be the PXRD spectrum 
    twoth(xth)=spectral_axis(xth);  %x-axis of the PXRD spectrum 
    theta=twoth(xth)/2/360*2*pi;    %convert 2*angle from degrees to radians 
    s=;                             %s for the Debye equation 
    q=;                             %q for the scattering amplitude 



  
    %f1 is gold's scattering amplitude, taken from 

http://lampx.tugraz.at/~hadley/ss1/crystaldiffraction/atomicformfactors/formf

actors.php 
    f_au=16.8819*exp(-0.4611*(q/4/pi)^2)+18.5913*exp(-

8.6216*(q/4/pi)^2)+25.5582*exp(-1.4826*(q/4/pi)^2)+5.86*exp(-

36.3956*(q/4/pi)^2)+12.0658; 
    for i=1:N-1 
        for j=i+1:N 
            d=; 
            pxrd(xth)=; 
        end; 
    end;  
end; 
figure; 
plot(twoth,pxrd,'b'); 


