
Chapter 13. Potential Surfaces and the Heisenberg Uncertainly Principle.  

Inarguably the most recognized statement in quantum mechanics is, “You can’t know where 

something is and how fast it is going.” However, the real meaning and implications of the 

Heisenberg uncertainty principle could not be made less clear. At the heart is the statistical 

nature of quantum, and the fact that different properties are correlated by the operators that 

describe them. Furthermore, the Heisenberg uncertainty principle is dynamic. For example, let’s 

say that you localize a quantum particle to a spot that you know absolutely. As a result, you can’t 

know the speed at all, and this requires that the speed is actually quite high. After all, if you 

know where something is and you know it’s not moving, then you have completely upended the 

principle! Last, there are actually several uncertainty principles, such as you can’t know where 

something is and its energy at the same time. 

13.1 Potential Energy Surfaces.  

13.1.1 The step potential. We have discussed the most simple potential surface possible 

in the previous chapter- the one dimension “freewave” potential that never ends. Unfortunately, 

the Universe (at times) can be quite a bit more complicated. So, introduced here quite literally 

the first step towards understanding more complex problems: the step potential shown in Figure 

13.1. Now that potential energy has entered into the equation, we define the Schrodinger 

equation which now has two parts depending on whether the particle is to the left or right of the 

barrier: 

x < 0: 
−ℏ2

2m

∂2

∂x2
ψI(x) = E ∙ ψI(x) 

x > 0: 
−ℏ2

2m

∂2

∂x2
ψII(x) + V0 ∙ ψII(x) = E ∙ ψII(x) 

Clearly there must be two 

solutions, one for the left side 

with no potential and another 

for the right. By “solution” we 

mean the wavefunction, and 

from the wavefunctions we can 

determine the energy of the 



system and many other properties. Since we have already discussed the solution to the flat 

potential “free wave”: 

ψI = A ∙ eik1x + B ∙ e−ik1x 

Now as for the 2nd region, it turns out that since the potential energy is finite but flat that the 

same solution applies albeit with a different wavevector k2: 

ψII = C ∙ eik2x + D ∙ e−ik2x 

Here, the wavevectors are as defined in the previous chapter: k1 = √
2mE

ℏ2  and: k2 = √
2m(E−V0)

ℏ2 . 

The second wavevector can be found by simply rearranging the Schrodinger equation in region II 

as: 
−ℏ2

2m

∂2

∂x2 ψII(x) = (E − V0) ∙ ψII(x), and thus one can see that where we had “E” in k1 is now 

replaced with (E − V0) in k2. Furthermore, k2<k1, which makes sense since the k’s are related to 

the kinetic energy, which is the difference in the total energy minus the potential energy. Hence, 

the particle in region II must be moving slower and has a correspondingly lower k2.   

 The next step is to question what are we solving any of this for? The original freewave 

problem is great for developing a fundamental understanding of wavefunctions and operators, 

but it is also very unrealistic. As for the step potential, its utility is that it shows what happens 

when a quantum mechanical particle encounters a barrier. A classical (Newtonian) particle will 

only do two things, bounce off the barrier if the energy is lower than the potential or cross over 

otherwise. As we will see here, a quantum particle is very different.  

13.1.2 Reflection and Transmission. Up until now, you have been told that if a particle 

has enough energy, perhaps by a statistical process as described by the Boltzmann distribution, it 

certainly traverses over the energy hill. Here, we will show you a quantum particle isn’t as 

cooperative. The next two topics will introduce how quantum particles interact with barriers. 

This is literally the definition of dynamics, and here we show that quantum particles such as 

electrons in light atoms do new things that a “classical” particle such as a pickup truck doesn’t.  

 As for the utility of the step potential, we can create a phenomenological model whereby 

a 1-dimensional universe is created with a particle to the right of the barrier. The particle is 

designed with kinetic energy and leftwards momentum, for which the correct wavefunction is: 

ψI(x) = A ∙ eik1x 



If the particle reflects off the barrier, it must move to the left with the same kinetic energy and 

momentum due to conservation of energy. Thus, the wavefunction in region I is actually: 

ψI(x) = A ∙ eik1x + B ∙ e−ik1x 

We can refer to the “A” wave as the incoming particle and the “B” wave as the reflected particle. 

This is because the probability amplitude of the incoming wave is: 

|A ∙ eik1x|
2

= |A|2 ∙ e−ik1x ∙ eik1x = |A|2 ∙ e0 = |A|2 

Likewise the probability amplitude of the reflecting wave is |B|2. If the particle transmits over 

the barrier it can only continue to the right, since there will not be any more walls to bound off 

of: 

ψII(x) = C ∙ eik2x 

Hence we refer to the “C” wave as the transmitted wave. We set “D” equal to 0 because the 

quantum particle cannot turn left if it goes over the barrier (i.e. it forever more moves to the 

right).  

The nature of the utility of the finite step potential is that it demonstrates the probability 

that a quantum object with transmit or reflect off a barrier. Clearly this is related to the 

coefficients A, B, and C, so we seek to solve these constants as a function of energy. Due to the 

fact that the absolute value of a wavefunction is related to probability, it is true that the 

probability of reflection (R) is: R =
|B|2

|A|2 and thus √R =
B

A
. Hence, the reflection is the probability 

that a wave turns left divided that it was moving right to begin with (hopefully this makes sense). 

We will solve for √R first. To do so, we invoke a stipulation from the previous chapter that 

wavefunctions be continuous and smooth. There would only be a potential problem at the step, 

x=0, because this is where the two different solutions meet. Thus: 

ψI,(x=0) = ψII,(x=0) (continuous) and: 
𝜕ψI,(x=0)

𝜕𝑥
=

𝜕ψII,(x=0)

𝜕𝑥
 (smooth)    

These equations will allow us to solve all the coefficients, and in fact it turns out there is a great 

shortcut to is problem. That is to equate the log derivative: 𝜕𝑙𝑛(𝜓) =
ψ′

ψ
 of each side at x=0: 

ψI
′(x = 0)

ψI(x = 0)
=

ψII
′(x = 0)

ψII(x = 0)
 

Hence:  

A ∙ ik1e0 − B ∙ ik1e0

A ∙ e0 + B ∙ e0
=

C ∙ ik2e0

C ∙ e0
 



k1A − k1B = k2A + k2B 

This can be simplified to:  

√R =
B

A
=

k1 − k2

k1 + k2
 

Using a similar analysis one can find that: 

√T =
2√k1k2

k1+k2
. Now that we have these 

relationships, what we do with them is 

calculate the values of k’s as a function of 

energy for a realistic system. By “realistic”, 

first consider that a car is not very quantum 

mechanical but an electron is. So, we will 

describe an electron using a mass of 9.109×10-31 kg. The only other parameter of the model is the 

potential step 𝑉0. For this, we will use 𝑉0 = 1 eV =  1.602×10-19 J, which is an electron volt (the 

energy an electron experiences travelling through a 1 Volt potential). Plotted in Figure 13.2 are 

the reflections and transmissions, where you can see that having enough energy to get over a 

barrier, does not mean that you go over the barrier! It’s likely, but not assured. The particle 

hitting the barrier with greater energy helps, which is about the only thing that makes sense.   

13.1.3 Tunneling. The next step up in complexity is the finite barrier shown in Figure 

13.3. This is just the step potential that steps back down after a length of L. As before, we should 

ask ourselves what lessons can be learned from this system, which as can be seen in the figure 

we might find that a particle, with an energy less than the potential, may not decay to 0 before it 

reaches the end of the barrier. What happens then? As we show here, the particle can continue to 

the right (forevermore), meaning that the particle has gone through a barrier even though it 

doesn’t have enough energy to do so. Imagine a pickup truck with an idling engine suddenly 

going over   

 As in the previous example 

the waves are the “A” on-coming 

wave and the “B” reflected one. 

There is a “C” and “D” that 

represent transmission through the 

barrier and reflection off the 



interface at x=L, respectively. The 

“E” wave is fully transmitted. You 

might wonder why there is a “D 

“wave, after all, the particle isn’t 

encountering a higher potential 

barrier (rather, quite the 

opposite!). The reason that the 

“D” wave exists is because all 

interfaces cause reflection, even 

when one traverses from a higher 

potential to a lower one. For 

example, you can see your 

reflection in a car with new black 

paint, right? This is the same idea.  

For this problem the main lesson to be learned is to examine the %transmission, |E|2, as a 

function of energy as shown in Figure 13.4. Here we see structure in the %T as a function of 

increasing energy. These are called “resonances”, and they are observed because the electron’s 

wavelength perfectly matches the size of the barrier. Next, we see that there is some area under 

the curve for energies below the barrier. This is quantum tunneling, a phenomenon that has been 

experimentally verified countless times. This means that the particle penetrates through the 

barrier despite the fact that it doesn’t classically have enough energy to do so. This is also where 

students state that quantum mechanics stipulates that a person can walk through a door; correct, 

but highly improbable!  

13.1.4 The particle in a box. The next potential energy surface on our list is the 

“particle-in-a-box”, which has V(x)=∞ at x ≤ 0 and x ≥ L and V(x)=0 everywhere in-between. 

This model system can be applied to understand many real phenomena and can also be used to 

describe electrons in atoms. For the latter case, this works because an electron sees a hydrogen’s 

proton like a trap- Coulomb’s law keeps it close by since there is a huge energy penalty to be far 

away. Shown in Figure 13.5 is the particle in a box’s potential energy surface and first two 

wavefunctions, which due to the fact that the potential is flat can be described using:  

ψII(x) = A ∙ eik1x + B ∙ e−ik1x 



Given the infinite potentials at the boundaries it must 

be true that: ψx=0 = 0 and: ψx=L = 0, which are 

boundary conditions. If these conditions weren’t true 

then the particle can technically escape the box, which 

requires a nominal infinite amount of energy. These 

also allow us to solve the wavefunction by satisfying 

the boundary conditions. Given that, at x=0: 

A ∙ eik1x + B ∙ e−ik1x = 0 

Then A + B = 0 and A = −B. We recognize that the 

symmetry imparted by the fact that means:  

ψ(x) = sin(k1x) 

Now we have to apply the second boundary condition 

at x=L: 

sin(k1L) = 0 

which can only be true if k1L = nπ, allowing us to 

solve for the wave vector: 

k1 =
nπ

𝐿
 

where n is an integer that goes from 1,2,3… 

As a result, the wavefunction is ψ(x) = N ∙ sin (
nπ

L
x) and 0 everywhere else due to the infinite 

potential. Also N is the normalization constant. Notice how we have solved the wavefunction 

without worrying about normalization? To find that part we note that: 

N2 ∫ sin2 (
nπ

L
x) ∂x

L

0

= 1 

We can use the internet to find that, and solving for N yields: 

ψII(x) = √
2

L
sin (

nπ

L
x) 

Last, we can calculate the energy either using the eigenvalue or expectation value methods; you 

should try that for an exercise. The result is: 

E =
n2ℏ2π2

2mL2
=

n2h2

8mL2
 



where we used the fact that ℏ2 =
h2

4π2
.  

The particle in a box describes many things. 

Shown in Figure 13.5B are cyanine dyes, where the 

length of the alternating double bonds in the center 

of the molecule represents the length of the box. 

Lengthening this part of the molecule causes a red-

shift in the dye absorption and emission. Shown in 

Figure 13.6 is a more dramatic example using 

nanotechnology, specifically semiconductor CdSe 

quantum dots. The emission of the particles can be tuned by changing the diameter on the order 

of just a few nanometers. And as solid-state materials, these particles are significantly more 

robust against degradation from the environment, which is why they are being incorporated into 

displays, including television sets! 

13.1.5 The particle in the finite box. The following is the same as the infinite box 

without the potential energy going to infinity outside the trap area as shown in Figure 13.7A. A 

better analogy is an upside-down finite barrier, mostly because the problem is unfortunately 

difficult to solve. Note that we have centered the box at x=0 for mathematical convenience as 

you will see later. There are two issues to consider, namely that there are three regions each of 

which has a different wavefunction. As in the finite box, we will use boundary conditions to 

solve for the allowed energy levels as there are bound solutions for E<V0. For E>V0, the 

solutions are unbound, meaning that the wavefunctions are just waves and any energy is allowed. 

We won’t consider that situation and will instead only study the case where E<V0.  



It is possible to spend quite a bit of time on this system, so we will limit the discussion to 

an analysis of the ground state. We assume that the trap region has an even symmetry 

wavefunction, i.e. ψII = B ∙ cos(k2x), where k2 = √
2mE

ℏ2  since there is no potential energy in 

that region. If the particle somehow breaks out on the left it will continue in that direction, 

implying ψI = A ∙ ek1∙x where k1 = √
2m(V−E)

ℏ2 . Using the same logic ψIII = C ∙ e−k1∙x. As per the 

boundary conditions, the wavefunctions must be continuous and smooth at the region I/II 

boundary: 

A ∙ e−k1∙L 2⁄ = B ∙ cos (−k2
L

2
)  and  k1 ∙ A ∙ e−k1∙L 2⁄ = −k2 ∙ B ∙ sin (−k2

L

2
)  

and likewise for region II/III: 

B ∙ cos (k2
L

2
) = C ∙ e−k1∙L 2⁄   and  −k2 ∙ B ∙ sin (k2

L

2
) = −k1 ∙ C ∙ e−k1∙L 2⁄  

Solving using log boundary conditions yields what is called a “transcendental” equation for k1 

and k2: 

tan (k2

L

2
) =

k1

k2
 

This is an equation which requires you to search for an energy which satisfies the above, given 

your potential energy descriptors (length of the box, potential height, and mass of the particle). 

You have to use a computer in this regard, and once you know the allowed energies you can 

determine the A, B etc. coefficients and then plot the wavefunctions as shown in Figure 13.7A. 

One last interesting point is that the finite box is a very good representation of an atom 

and can even give us an idea about chemical bonds if we allow two finite boxes to get close to 

each other. Shown in Figure 13.7B are the ground and 1st excited states for a particle between 

two finite boxes. Due to the way the wavefunction “bunches” between the two traps in the 

ground state while a node prevents the same in the excited state, we can say that these look just 

like bonding and antibonding orbitals! 

13.2. Complex Potential Energy Surfaces: Vibration. We will take our first step into 

a non-flat potential surface by looking at harmonic oscillators, also known as springs. Also 

known as chemical bonds.  

13.2.1 Turning points. An interesting aspect of quantum mechanics is revealed by the 

vibrational potential energy surface.  



13.3 Superposition: Wavefunctions as Waves. We will first demonstrate the idea of 

uncertainty in quantum mechanics using the well-known position / momentum version. To begin, 

we will start with a wavefunction, and while any old wavefunction will do let’s use a Gaussian 

(bell-shaped) one that is centered inside a box that goes from 0 ≤ x ≤ L: 

ψ(x) =
1

(2πσ2)
1

4⁄
e

−(x−L 2⁄ )2

4σ2  

We will consider two wavefunctions, one that is “delocalized” and thus wide and another that is 

narrow that we call “localized”. Hopefully it is intuitively clear that the there is more certainty in 

the position of the localized state vs. the delocalized state. 

In the previous chapter we introduced the idea that an eigenfunction of one operator, ψ, can 

be expressed as a linear combination of the eigenfunctions of another, Φn: 

ψ = ∑ cn ∙ Φn 

and for our purposes we will make all the Φn’s the particle in a box states:  

Φn = √
2

L
∙ sin (nπ

x

L
) 

This is referred to as a superposition of states. These functions are all graphed in Figure 13.8. 



Now for the superposition. In Figure 13.9 we show that the wider bell-shaped state on the 

left can be equated to a sum of particle in a box wavefunctions of even symmetry (n=1, 3, 5, etc.) 

weighted by an appropriate amount. Technically, this delocalized function or any other can have 

perfect overlap with a superposition of particle in a box states so long as an infinite number of 

those states are summed. However, just adding three particle in a box states does such a good job 

that it is hard to discern any difference between them as shown here: 

A very different result is observed with the localized state shown in Figure 13.10. Here, it is 

necessary to sum at least 5 particle in a box states to provide a reasonable representation of the 

original function. Even then the overlap isnt’ as good as observed with the delocalized state in 

Figure 13.9 even though more functions are used! 

Now you are probably asking what any of this has to do with the uncertainty principle. To 

answer, let’s now measure other properties such as the momentum. The measurement will 

require us to do an experiment, and any good experimentalist the measurement will be repeated 

several times to statistically quantify the average value and standard deviation of the results. This 

is necessary because the same momentum won’t be measured in every experiment. In fact, we 

contend that each measurement will return the momentum of one of the particle in a box’s states, 

which is ℏ𝑘 = ℏ ∙
𝑛𝜋

𝐿
, with a probability |cn|

2. Thus, measuring the momentum from the 

delocalized state will return one of the three composing particle in a box’s state’s momentum 

with corresponding probabilities of |c1|
2, |c2|

2, or |c3|
2, which would have an average value of: 

〈p〉 = |c1|2 ∙ ℏ
π

L
+ |c2|2 ∙ ℏ

3π

L
+ |c3|2 ∙ ℏ

5π

L
 



 In contrast, when the same experiment is repeated on the localized state, each measurement 

may return one of five values of momentum with corresponding probabilities of |c1|
2, |c2|

2, |c3|
2, 

|c4|
2, or |c5|

2.  Now here is a good question, which result has greater certainty? Of course, there is 

greater certainty in making measurements off the delocalized state since each measurement 

returns one of just three values, and probably we won’t have to make too many measurements 

before we are comfortable with the resultant average value. However, measuring properties from 

the localized state is more problematic since the variations from our multiple measurements are 

greater. This is due to the fact that five particle in a box eigenfunctions equate to the localized 

state, and thus we will have to make more measurements to have the confidence in an average 

value. We conclude that the certainty in position is anticorrelated to the certainty in other 

properties such as momentum. This is in fact the Heisenberg uncertainty principle, “you can’t 

know something is and how fast it’s going at the same time.” Clearly there is more certainty in 

position for the localized state shown in Figure 13.1.A, and correspondingly less knowledge of 

the position of the delocalized one. Mathematically, this is expressed by the variance in the 

function, the square root of which is the standard deviation () you may recall from your first 

introduction into statistics; more on this later.  

The above demonstration isn’t really that exact and was meant to give the reader a 

graphical description of uncertainty in quantum mechanics. Now, we must slog through the more 

rigorous mathematics. First, let’s define uncertainty via the variance, and we will start with 

position: 

Var(x) =
1

N − 1
∑(x − x̅)2

N

i=1

= 〈x2〉 − 〈x〉2 

You are probably familiar with the summation from an introduction to statistics in high school. 

The second expression might also be familiar to you, these are expectation values. Let’s calculate 

the variance in the position for our bell-shaped wavefunction ψ(x) =
1

√2πσ
e

−(x−
L
2

)
2

2σ2 .  

〈x̂〉 = ∫ ψn′
∗ x̂ψn ∙ ∂τ

upper

lower

≈ ∫ (
1

(2πσ2)
1

4⁄
e

−(x−
L
2

)
2

4σ2 )

∗

∙ x ∙
1

(2πσ2)
1

4⁄
e

−(x−
L
2

)
2

4σ2 ∙ ∂x

∞

−∞

= 



1

√2πσ2
∫ x ∙ e

−(x−
L
2

)
2

2σ2 ∙ ∂x

∞

−∞

=
L

2
 

Next we calculate  

〈x2̂〉 =
1

√2πσ2
∫ x2 ∙ e

−(x−
L
2

)
2

2σ2 ∙ ∂x

∞

−∞

= σ2 + (
L

2
)

2

 

As a result 〈x2̂〉 − 〈x̂〉2 = σ2 + (
L

2
)

2
− (

L

2
)

2
= σ2. This is a perfectly sensible result, and in fact it is a 

standard statistical definition that the variance of a bell-shaped curve is σ2. Better yet, we know that we 

did the integrals correctly! 

Now let’s look at momentum; this is shall we say a bit more arduous: 

〈p̂〉 = ∫ ψn′
∗ p̂ψn ∙ ∂τ

upper

lower

≈ ∫ (
1

(2πσ2)
1

4⁄
e

−(x−
L
2

)
2

4σ2 )

∗

∙
ℏ

i

∂

∂x

1

(2πσ2)
1

4⁄
e

−(x−
L
2

)
2

4σ2 ∙ ∂x

∞

−∞

= 

ℏ

i√2πσ2
∫ e

−(x−
L
2

)
2

4σ2 ∙
∂

∂x
e

−(x−
L
2

)
2

4σ2 ∙ ∂x

∞

−∞

=
ℏ

i√2πσ2
∫ e

−(x−
L
2

)
2

4σ2 ∙
(x −

L
2

)

2σ2
e

−(x−
L
2

)
2

4σ2 ∙ ∂x

∞

−∞

= 

ℏ

i√8πσ3
∫ (x −

L

2
) ∙ e

−(x−
L
2

)
2

2σ2 ∙ ∂x

∞

−∞

= 0 

No average momentum. The average of the momentum squared takes a bit more algebra: 

〈p2̂〉 = ∫ ψn′
∗ p̂ψn ∙ ∂τ

upper

lower

≈ −ℏ2 ∫ (
1

(2πσ2)
1

4⁄
e

−(x−
L
2

)
2

4σ2 )

∗

∙
∂2

∂x2

1

(2πσ2)
1

4⁄
e

−(x−
L
2

)
2

4σ2 ∙ ∂x

∞

−∞

= 

−ℏ2

√2πσ2
∫ e

−(x−
L
2

)
2

4σ2 ∙
∂2

∂x2
e

−(x−
L
2

)
2

4σ2 ∙ ∂x

∞

−∞

=
−ℏ2

√32πσ5
∫ (

L2

4
− 2σ2 − Lx + x2) ∙ e

−(x−
L
2

)
2

2σ2 ∙ ∂x

∞

−∞

=
ℏ2

4σ2
 

As a result, the variance in momentum is: 〈p2̂〉 − 〈p̂〉2 =
ℏ2

4σ2 

To summarize, we see that the uncertainty in position and momentum are anticorrelated; the position 

uncertainty scales as σ2, however, the same for momentum is inversely proportional to σ2. 



It turns out that there is a theorem in geometry that can assist us with understanding the Heisenberg 

Uncertainty Principal. It’s called the Cauchy-Schwartz inequality, and using it we can do a short 

derivation to show that: 

Var(x̂) ∙ Var(p̂) ≥
1

4
|[x̂, p̂]|2 

Where we introduce a new mathematical entity called a commutator: 

[x̂, p̂] = x̂ ∙ p̂ − p̂ ∙ x̂ 

NOT DONE YET! 

There are several meanings to unpack here.  

 

Therefore: (
ℏ2L2

2σ4 ) (σ2) =
ℏ2L2

2σ2 . 

 

  



Problems: Numerical 

1. If the uncertainty principal for position and momentum is: σx
2 ⋅ σp

2 ≥
1

4
|[x, p]|2  

And since we showed in class that: 
1

4
|[x, p]|2  =

1

4
|

ℏ

i
|

2
=

ℏ2

4
, therefore:  

σx
2 ⋅ σp

2 ≥ 0.25 ∙ ℏ2 

Can you show that this principle is consistent with the σx
2 and σp

2 determined in problems 4 and 5 

for Ψ(x) =
2

L
∙ √x ∙ sin (

π

L
x)?         (3 pts) 

2. In class, I mentioned that the uncertainty principal “does things”. Here is what I mean: 

We decomposed the particle in a box wavefunctions shown below (A & B) into momentum wave 

eigenstates (i.e. eik∙x) as shown below: 

 

Recall that, as the “A” state has more uncertainty in position, it can be decomposed into just a 

few momentum waves. However, the “B” state requires more momentum waves, perhaps ~100 

of them. Also look at the handout for a definitive example that was done with computer analysis. 

a. How does the energy of the momentum waves change? Better yet, just tell me which 

momentum wave below has more energy and why:      (2 pts) 

 

b. Given your answer in pt. a, which of the two wavefunctions (the delocalized state “A” or more 

localized state “B”) have more kinetic energy and why?     (8 pts) 

Hint: I have made up a table of components 1→5 that have respective energies of 1 J →5 J, 

and the percent that each contributes to states A and B. Use these data to find the average 



values of energies for states A and B, which should give you some insight into how to answer 

this problem. 

Energy 

(eV) 

%A %B 

1 75% 30% 

2 15% 30% 

3 10% 20% 

4 0% 10% 

5 0% 10% 

This should help you understand how increasing the percent of higher energy states will affect 

the total energy. 

3. In class, I mentioned that the uncertainty principal “does things”. Here is what I mean: 

We decomposed the particle in a box wavefunctions shown below (A & B) into momentum wave 

eigenstates (i.e. eik∙x) as shown below: 

 

Recall that, as the “A” state has more uncertainty in position, it can be decomposed into just a 

few momentum waves. However, the “B” state requires more momentum waves, perhaps ~100 

of them. Also look at the handout for a definitive example that was done with computer analysis. 

a. How does the energy of the momentum waves change? Better yet, just tell me which 

momentum wave below has more energy and why:      (2 pts) 

 

b. Given your answer in pt. a, which of the two wavefunctions (the delocalized state “A” or more 

localized state “B”) have more kinetic energy and why?     (8 pts) 



Hint: I have made up a table of components 1→5 that have respective energies of 1 J →5 J, 

and the percent that each contributes to states A and B. Use these data to find the average 

values of energies for states A and B, which should give you some insight into how to answer 

this problem. 

Energy 

(eV) 

%A %B 

1 50% 30% 

2 30% 20% 

3 20% 20% 

4 0% 15% 

5 0% 15% 

This should help you understand how increasing the percent of higher energy states will affect 

the total energy. 

4. HCl gas has an absorption at 2990 cm-1; this is one of the highest frequencies that is 

known in the infrared spectrum (the IR range is 200 → 13,000 cm-1). Using this 

information can you estimate the force constant kf of the spring (bond) that connects the 

H and Cl? Recall that the energy of a harmonic oscillator is E = (υ +
1

2
) ℏω =

(υ +
1

2
) ℏ√

kf

μ
, where μ is the reduced mass: μ =

m1m2

m1+m2
. Hint: The ground state has υ =

0, and 1 cm-1 = 1.986×10-23 J.  The mass of H is 1 amu and Cl is 35.5 amu. (7 pts) 

Hint-hint: Did you get ~2050 N/m? Then you forgot that absorption wavelength is due to 

the difference in energy between the 1st excited and ground state (final energy – initial 

energy).  

5. Deuterium chloride (DCl) gas has an absorption at 2144 cm-1 in the infrared (the IR 

range is 200 → 13,000 cm-1). Using this information can you estimate the force constant 

kf of the spring (bond) that connects the D and Cl? Recall that the energy of a harmonic 

oscillator is E = (υ +
1

2
) ℏω = (υ +

1

2
) ℏ√

kf

μ
, where μ is the reduced mass: μ =

m1m2

m1+m2
. 

Hint: The ground state has υ = 0, and 1 cm-1 = 1.986×10-23 J. The mass of D is 2 amu 

and Cl is 35.5 amu. Hint-hint: Did you get ~2050 N/m? Then you forgot that absorption 

wavelength is due to the difference in energy between the 1st excited and ground state 

(final energy – initial energy).         (7 pts) 



Problems: Theoretical or Explain in Words  

1. If I have a potential energy surface as shown on the 

right, then the solution to the Schrodinger equation to 

the left of x=L is: 

ΨI(x) = A ⋅ sin (π ⋅
x

2L
) 

To the right of x=L is: 

ΨII(x) = B ⋅ e−(x−L)2
 

a. Why is the wavefunction in region I a sine function? 

Why not a cosine function?         (3 pts) 

b. What is the relationship between constants A and B?      (3 pts) 

Hint: This is a derivation question, and the wavefunctions must be continuous. Thus, the “right” 

wavefunction must equal the “left” one at x=L.  

c. Show that the wavefunctions are smooth at x=L.      (3 pts) 

Hint: Now that you know how A is related to B, you can show that the derivatives of the 

wavefunctions are equal at x=L. 

2. If I have a potential energy surface as shown on the right, then the solution to the Schrodinger 

equation to the left of x=0 is: 

ΨI(x) = A ⋅ cos (π ⋅
x

2L
) 

To the right of x=0 is: 

ΨII(x) = B ⋅ e−x2
 

a. Why is the wavefunction in region I a cosine function? Why not a sine function? (3 pts) 

b. What is the relationship between constants A and B?      (3 pts) 

Hint: This is a derivation question, and the wavefunctions must be continuous. Thus, the “right” 

wavefunction must equal the “left” one at x=0.  

c. Show that the wavefunctions are smooth at x=0.      (3 pts) 

Hint: Now that you know how A is related to B, you can show that the derivatives of the 

wavefunctions are equal at x=0. 

3. I have calculated a wavefunction, in blue, for one of the potential surfaces (red) below. Only 

one of them is correct- can you identify which potential function is correct and please state why? 

            (7 pts) 



 

4. For a free wave hitting a barrier:  

B

A
=

k1 − k2

k1 + k2
 

were k1 is real since k1 =
√2mE

ℏ
 and E is a positive number. However, if E<V, then: k2 =

√2m(E−V)

ℏ
 

and is imaginary and can be expressed as k2 = i ∙ k2
′ = i ⋅

√2m(V−E)

ℏ
 (note how V and E have 

switched place when “i” is added). The equation for reflection is then: 
B

A
=

k1−i⋅k2
′

k1+i⋅k2
′ . Since the percent 

reflection is actually
|B|2

|A|2 =
B∗B

A∗A
, please show that reflection is always 100% if E<V.  (5 pts) 

5. Consider the following potential energy surface that 

has an infinite potential at x=0: 

a. Which of the wavefunctions below is the correct for 

region I and why? 

1. cos(k ⋅ x)       2. Sin( k ⋅ x)    3. Eikx      4. E−ikx 

(5 pts) 

b. Is there any boundary condition that dictates what k is? In other words, can k take on any 

value so long at the correct form (question a) is determined?    (3 pts) 

c. If there is no boundary condition that limits the value of k, are there limits on the energy? 

Please explain, and hint: this is basically a freewave problem.     (3 pts) 



6. The “quantum” in quantum mechanics describes when only certain energy levels are allowed. 

Thus, there are finite energy differences between the ground state and other excited states. Not 

all systems have quantized energy levels.        (9 pts) 

a. For the free wave: is energy quantized? b. What about the particle in a box? c. What about 

the particle in a finite box, if the energy is > V0 (like the blue wave)? 

7. The “half-baked well” potential has infinite 

potential energy at x=-L, and a step at x=0:  

a. Which wavefunction below is the correct for 

region I and why? Hint: what stipulation does the 

infinite potential place on the wavefunction? 

1. cos (k1{x + L} −
𝜋

2
)       2. sin( k1 ⋅ x)    

3. eik1x      4. e−ik1x    (5 

pts) 

b. In the 1st region, since V=0 the Schrodinger equation is:  

ℏ2k1
2

2m
⋅ ΨI(x) = E ⋅ ΨI(x) 

Solve for k1. Hint: this is just an algebra problem.       (2 pts) 

c. In the 2nd region where the potential step V=V0 exists:  

ℏ2k2
2

2m
⋅ ΨII(x) = (E − V0) ⋅ ΨII(x) 

Solve for k2 in this case.         (2 pts) 

d. The wavefunction ΨII(x) is in a region of constant potential, therefore possible wavefunctions 

are: 

1. cos (k2{x + L} −
𝜋

2
)             2. sin( k2 ⋅ x)           3. eik2x   4. e−ik2x 

Figuring out which one is correct is a bit harder. Here is how you reason through it: if a particle 

passes through the wall from region 1 into region 2, it will continue moving to the right and do so 



forever since there are no more walls to bounce off of. Therefore, which of the functions above 

(1-4) correctly describe a particle always moving right?      (5 pts) 

e. Now unfortunately we run into two possible solutions for region 2. Let’s say that in region 2: 

k2 =
√2m(E−V0)

ℏ
, and thus the two possibilities are that the particle has more energy that the 

potential barrier (E > V0) or it has less (E < V0). In the former case (E > V0),  ΨII(x) = ei
√2m(E−V0)

ℏ
x
 

which is a wave that travels to the right forever. 

If the energy is less than the potential energy, can you justify substituting k2 = i
√2m(V0−E)

ℏ
 for 

√2m(E−V0)

ℏ
? Please explain.         (2 pts) 

f. If you plug k2 = i ⋅
√2m(V0−E)

ℏ
 into ΨII(x) =eik2x, does the wavefunction continue to oscillate like 

a sine or cosine or does it behave differently? Please explain your answer.   (4 pts) 

 

8. I have drawn here two wavefunctions that 

are solutions to the half-baked well if the 

energy of the particle is less than V0. 

Obviously, the wavefunctions are continuous 

and smooth, which is due to using the “right” 

energies. To show that this is the case, let’s do 

the following: 

a. Set:  

ΨI(x) = cos (
√2mE

ℏ
{x + L} −

𝜋

2
) 

and:  

ΨII(x) = e
−√2m(V0−E)

ℏ
⋅x

 

equal at x=0.     (2 pts) 

b. Calculate the derivative of ΨI(x) and ΨII(x), and set the two derivatives equal at x=0. (6 pts) 

c. Divide the equation in b by the equation in a to derive the relationship: 

tan (
√2mE

ℏ
L −

𝜋

2
) =

√(V0 − E)

√E
 



This equation does not allow one to solve for E analytically. Basically, you have to plug in numbers 

for L, m, and V0 and then determine what energy E makes the left side equals the right side. 

            (6 pts) 

d. If the mass of the particle is that of an electron, L is 1 nm, and the barrier is 3 eV, can you 

show that energies E of 4.8492×10-20 J and 1.9146×10-19 J (the same shown in the figure) satisfy 

the relationship in pt. c?         (4 pts) 

e. Drawn above are the two wavefunctions for the states with E =4.8492×10-20 J and the other 

with E =1.9146×10-19 J. How would you describe these two states to a student in freshman 

chemistry?           (4 pts) 

9. I have drawn here two wavefunctions that 

are solutions to the half-baked well if the 

energy of the particle is less than V0. 

Obviously, the wavefunctions are continuous 

and smooth, which is due to using the “right” 

energies. To show that this is the case, let’s 

do the following: 

a. Set:  

ΨI(x) = cos (
√2mE

ℏ
{x + L} −

𝜋

2
) 

and:  

ΨII(x) = e
−√2m(V0−E)

ℏ
⋅x

 

equal at x=0.     (2 pts) 

b. Calculate the derivative of ΨI(x) and 

ΨII(x), and set the two derivatives equal at x=0. (6 pts) 

c. Divide the equation in b by the equation in a to derive the relationship: 

tan (
√2mE

ℏ
L −

𝜋

2
) =

√(V0 − E)

√E
 

This equation does not allow one to solve for E analytically. Basically, you have to plug in numbers 

for L, m, and V0 and then determine what energy E makes the left side equals the right side. 

            (6 pts) 



d. If the mass of the particle is that of a proton, L is 0.1 nm, and the barrier is 0.1 eV, can you 

show that energies E of 2.4895×10-21 J and 9.6710×10-21 J (the same shown in the figure) satisfy 

the relationship in pt. c?         (4 pts) 

e. Drawn above are the two wavefunctions for the states with E =2.4895×10-21 J and the other 

with E =9.6710×10-21 J. How would you describe these two states to a student in freshman 

chemistry?           (4 pts) 

10. In the particle-in-a-half-

baked-well problem, you see 

that the wavefunction 

decayed exponentially into 

the barrier when E<V as 

shown on the left. Now the 

question is- what do you think 

happens if the right barrier was “thin”, such that the wavefunction doesn’t decay to 0 before the 

end of the barrier as shown here? Please draw and explain your result.  (5 pts) 

11. Units! a. In problem set 6, question 6 (a copy is at the end of this problem set), an electron 

(mass=9.109×10-31 kg) was trapped in a 1 nm (L=1×10-9 m), 3 eV (V0= 4.807×10-19 J) potential 

well. I gave you the ground and excited state energies (4.85×10-20 J and 1.91×10-19 J), which I 

found with: tan (
√2mass∙E

ℏ
∙ L −

π

2
) =

√(V0−E)

√E
 using the Wolfram zeros calculator.  

Now you do the same- please use the equation, with SI units inputted to find the energies that 

solve the expression above. (ℏ = 1.0546 × 10−34J ∙ s) 

Hint: to answer just send us a screen clip of the website, and most important the website won’t 

work so don’t try too hard!         (3 pts) 

b. The website won’t return any values because the input parameters are too small. To resolve 

the problem you are going to use atomic units, in which ℏ = 1, 
1

4πϵ0
= 1, e2 = 1 (the charge of an 

electron), length is in Bohrs (=0.0529 nm), and the mass of an electron is: me = 1. In this system 

of units energy is in Hartrees, where 1 Hartree = 27.2114 eV = 4.36×10-18 J. So, if you do the 

conversions, and re-insert into the tan (
√2mass∙E

ℏ
∙ L −

π

2
) =

√(V0−E)

√E
 equation, the website should 

return the correct answers; please send us a screen shot and verify that the energies are the 

same as the ones I gave.  Hint: the website can crash if you put in more than three significant 

figures.           (7 pts) 

https://www.wolframalpha.com/widgets/gallery/view.jsp?id=b858339e64fa997454dd12f77cb1ece1


12. Concerning the finite barrier 

problem, let’s think about what 

happens when a particle hits a barrier 

(region II) with the same amount of 

energy as the potential energy barrier, 

i.e. E=V.  

Free wavefunctions in the presence of a flat potential are the solution to:  

ĤΨ =
−ℏ2

2m

∂2

∂x2
Ψ(x) + V ⋅ Ψ(x) = E ⋅ Ψ(x)  

which is simplified into: 

−ℏ2

2m

∂2

∂x2
Ψ(x) = (E − V) ⋅ Ψ(x) 

For region II, the wavefunction has a general solution of the form: Ψ(x) = C ⋅ ei⋅k2⋅x + D ⋅ e−i⋅k2⋅x, 

where C and D are constants and k2 is defined as: k2 =
√2m(E−V)

ℏ
.  

It turns out that, if E=V, then ΨII(x) = C + D ⋅ x. Can you show that this wavefunction is a solution 

to 
−ℏ2

2m

∂2

∂x2 Ψ(x) = (E − V) ⋅ Ψ(x)?        (5 pts) 

13. Going back to #8, the problem of the finite barrier when E=V, we need to solve what is the 

probability of reflection and transmission. To do so, we must solve a system of four equations- 

the continuity and smoothness of the wavefunctions I & II at x=0 and the same for II and III 

at x=L. 

a. If ΨI(x) = A ⋅ ei⋅k1⋅x + B ⋅ e−i⋅k1⋅x and ΨII(x) = C + D ⋅ x, what are the two equations that stipulate 

that the wavefunction is continuous and smooth at x=0?     (4 pts) 

b. Now if  ΨII(x) = C + D ⋅ x and ΨIII(x) = E ⋅ ei⋅k1⋅x, what are the two equations that stipulate that 

the wavefunction is continuous and smooth at x=L?      (4 pts) 

14. Now let’s solve the equations we derived in question 9 by insert values. We have already 

assumed that E=V, and let’s use a finite value for k1 =
4π

L
. This gives us four equations to work 

with: 

A + B = C 

i ⋅
4π

L
⋅ A − i ⋅

4π

L
⋅ B = D 

C + D ⋅ L = E ⋅ ei⋅4π 

D = i ⋅
π

L
⋅ E ⋅ ei⋅4π 



While we can use and note that ei⋅4π = 1 to simplify the above, unfortunately, this system of four 

equations has 5 unknowns (A, B, C, D, and E). However, if we want the (reflection)1/2, that is equal 

to the ratio of B/A. Likewise, (transmission)1/2 is the ratio of E/A. Using this information, we can 

rewrite the system of equations as: 

1 + r = C 

i ⋅
4π

L
− i ⋅

4π

L
⋅ r = D 

C + D ⋅ L = t 

D = i ⋅
4π

L
⋅ t 

where r=B/A (the square root of the reflectance) and t=E/A (the square root of the transmission). 

Now you can plug these into the Mathematica Online system of equations solver found here: 

http://www.wolframalpha.com/widgets/view.jsp?id=ae438682ce61743f90d4693c497621b7 

and determine what r and t are. 

When you do, note that you need to take the absolute value of the results for r and t to get the 

real values like you did in question 3. For example, if you find that r =
2π

2π+i
, then: 

|r|2 = (
2π

2π+i
)

∗
(

2π

2π+i
) = (

2π

2π−i
) (

2π

2π−i
) =

4π2

4π2+1
=0.975, which is ~97.5%. Note that 1-|r|2 = |t|2. 

                    (8 pts) 

Hint: Show me what the web site returns of r and t, and then determine the absolute values. Also 

I found that the Wolfram web site can hang, if so, hit the equal sign as indicated here. 

15. Now let’s solve the equations we derived in question 9 by insert values. We have already 

assumed that E=V, and let’s use a finite value for k1 =
2π

L
. This gives us four equations to work 

with: 

A + B = C 

i ⋅
2π

L
⋅ A − i ⋅

2π

L
⋅ B = D 

C + D ⋅ L = E ⋅ ei⋅2π 

D = i ⋅
π

L
⋅ E ⋅ ei⋅2π 

While we can use and note that ei⋅2π = 1 to simplify the above, unfortunately, this system of four 

equations has 5 unknowns (A, B, C, D, and E). However, if we want the (reflection)1/2, that is equal 

to the ratio of B/A. Likewise, (transmission)1/2 is the ratio of E/A. Using this information, we can 

rewrite the system of equations as: 

1 + r = C 

http://www.wolframalpha.com/widgets/view.jsp?id=ae438682ce61743f90d4693c497621b7


i ⋅
2π

L
− i ⋅

2π

L
⋅ r = D 

C + D ⋅ L = t 

D = i ⋅
2π

L
⋅ t 

where r=B/A (the square root of the reflectance) and t=E/A (the square root of the transmission). 

Now you can plug these into the Mathematica Online system of equations solver found here: 

http://www.wolframalpha.com/widgets/view.jsp?id=ae438682ce61743f90d4693c497621b7 

and determine what r and t are. When you do, note that you need to take the absolute value of 

the results for r and t to get the real values like you did in question 3. For example, if you find that 

r =
π

π+i
, then: 

|r|2 = (
π

π+i
)

∗
(

π

π+i
) = (

π

π−i
) (

π

π−i
) =

π2

π2+1
=0.908, which is ~91%. Note that 1-|r|2 = |t|2. (8 pts) 

Hint: Show me what the web site returns of r and t, and then determine the absolute values. Also 

I found that the Wolfram web site can hang, if so, hit the equal sign as indicated here. 

 

16. For a wavefunction of the form: Ψ(x) =
2

L
∙ √x ∙ sin (

π

L
x), what is the variance in momentum 

σp
2 = 〈p2〉 − 〈p〉2?       

a. First determine: (
ℏ

i
)

∂

∂x
(

2

L
√x ∙ sin (

π

L
x))       (6 pts) 

b. Set up the 〈p〉 as:           (4 pts) 

〈p〉 =
4

L2
∫ (√x ∙ sin (

π

L
x))

∗

(
ℏ

i
)

∂

∂x
(√x ∙ sin (

π

L
x)) ∙ ∂x

𝐿

0

 

And using your answer from pt. a you should be able to find the answer in the list of identities. 

c. Now as for:  

〈p2〉 =
4

L2
∫ (√x ∙ sin (

π

L
x))

∗

(
ℏ2

i2 )
∂2

∂x2 (√x ∙ sin (
π

L
x)) ∙ ∂x

L

0

 

Unfortunately, this one requires the professional form of Mathematica to solve. I used it to 

determine that 〈p2〉 ≈
11ℏ2

L2 . From this you can now calculate σp
2 = 〈p2〉 − 〈p〉2.   (2 pts) 

 

http://www.wolframalpha.com/widgets/view.jsp?id=ae438682ce61743f90d4693c497621b7

