
Chapter 12. Introduction to the Schrödinger Equation.  

12.1 Einstein’s Theory of Relativity. Occasionally mainstream news, whether TV or 

internet, like to report on scientific phenomena and recent findings. However, they invariably 

simplify things to the point that the information is wrong. The two greatest victims of these 

unfortunate oversimplifications are the theories of relativity and quantum mechanics. For 

example, E = mc2 anyone? Not hardly, Einstein derived the following: 

E2 = c2p2 + m2c4 

where E is energy, m is mass, c is the speed of light, and p is momentum. The above is clearly a 

mouthful; however, if the particle isn’t moving (p=0), then E2 = m2c4 which simplifies to:  

E = mc2 

Thus, this ultra-famous equation is only correct for a particle at rest. And as you will see shortly, 

quantum mechanics stipulates that everything is always moving. 

Einstein’s equation provides a launching point for the development of quantum 

mechanics. In this regard, let’s say that we are studying a particle with no mass such as a photon 

(m = 0 kg). In that case: 

E2 = c2p2 → E = cp 

The energy of a photon is known to be hυ, where h is Planck’s constant and υ is frequency 

which is: υ =
c

λ
 and λ is the wavelength. We can thus show that E = h

c

λ
= cp, which means that 

a massless particle such as a photon has a momentum: p =
h

λ
. Even though momentum is mass 

times velocity, and a photon has no mass, it still has a momentum. And now you should also 

know that many of the things you were told were absolutely true are, in fact, not true at all. Also, 

this is just our beginning of the discussion of Stranger Things. 

12.1.1 Why waves? The theory of small things introduces concepts that seem 

preposterous to those indoctrinated into classical mechanics, defined as Isaac Newton’s equation: 

force = mass × acceleration. It should be made clear on the outset that the theory of quantum 

mechanics as formulated by the Schrödinger equation is known to be incorrect. However, for 

chemistry the form of quantum mechanics introduced here is as accurate as can be measured, so 

its “good enough” for developing a thorough understanding of chemical phenomena.   

The most important concept is that small things (mostly electrons) often act more like 

waves than particles. For example, if a truck hits a wall, it will break through it if it is travelling 



fast enough (or faster than that!). However, if the truck is actually an electron, it may break 

through the wall even if it is going very slowly. Alternatively, if it has the right speed to break 

through the wall, it might instead just bounce off it.  Confused yet? Here is a better analogy- an 

electron trying to get through a barrier is like light skimming off the surface of water. And that is 

because of the wave equation.  

12.2 The Schrödinger Equation. We started to understand waves once Maxwell’s 

equations for electromagnetism were developed. They are: 

∇ × ℇ = −
∂B

∂t
 

∇ × B =
1

c2

∂ℇ

∂t
 

∇ℇ = 0 

∇B = 0 

where ℇ and B are electric and magnetic fields and t is time. You worked with these equations 

when you took Physics II to understand how an oscillating magnetic field creates electricity 

(alternatively, how an electric motor spins). You probably had to calculate the electric field from 

a dipole as well. The wave equation comes about when you combine these equations to show 

that: 

∂2

∂x2
ℇ =

1

c2

∂2

∂t2
ℇ 

A function for the electric field ℇ that can solve the above is: ℇ(x, t) = cos (
2π

λ
x − ωt), where ω 

is the angular frequency (ω = 2πν). This describes a wave travelling to the right. If we input this 

function into: 
∂2

∂x2 ℇ =
1

c2

∂2

∂t2 ℇ, and by calculating the double derivatives we can show that: 

∂2

∂x2
cos (

2π

λ
x − ωt) =

1

c2

∂2

∂t2
cos (

2π

λ
x − ωt) 

And therefore: 

(
2π

λ
)

2

cos (
2π

λ
x − ωt) =

ω2

c2
cos (

2π

λ
x − ωt) 

Since you can eliminate the function cos (
2π

λ
x − ωt) from both sides the remainder is: (

2π

λ
)

2

=

ω2

c2 , and thus λω = 2πc. This is a well-known description of how wavelength and frequency of 

light are related.  



Here we will examine how to adjust the parameters of the wave equation to include mass, which 

will lead us to quantum mechanics for particles. If we look back at: ℇ(x, t) = cos (
2π

λ
x − ωt), 

we can multiply and divide the argument of cosine by the Plank constant h:   

ℇ = cos [
1

h
(

2πh

λ
x − h2πνt)] 

If we introduce a new constant ℏ =
h

2π
, we have:  

cos [
1

ℏ
(

h

λ
∙ x − hν ∙ t)] 

where we see the formula for momentum p =
h

λ
 from the discussion on relativity in the previous 

section and we of course know that hν is the energy (E) of a photon (or any wave). Thus: 

Travelling vs. Standing waves 

Equations such as:  

cos (2π ∙
x

λ
− ω ∙ t) 

represent travelling waves, which is obvious if you look at a figure of this function over time 

as shown below (top). The above example is for a wave moving to the right. However, you 

are also aware of standing waves, you probably created one when you shook a rope up and 

down at the right frequency. The reason a standing wave forms is that the waves you input 

reflect off the end and travel back to you. The addition of the left and right moving waves: 

cos (2π ∙
x

λ
− ω ∙ t) + cos (2π ∙

x

λ
+ ω ∙ t) = 

2 ∙ cos (2π ∙
x

λ
) ∙ sin(ω ∙ t) 

creates the standing wave as shown on the bottom of the 

figure . In quantum mechanics we have both types, where  

a travelling wave carries energy with it  like an electron  

shot out of a hot wire filament. A standing wave represents  

a quantum entity that is sitting “still”. An example is the  

hydrogen atom, which has an electron that cannot “escape”  

because it remains bound to the nucleus by the Coulombic  

interaction. 



ψ(x, t) = cos [
1

ℏ
(p ∙ x − E ∙ t)] 

where we have used a new symbol (ψ) to replace ℇ(x, t) as we are moving further away from 

describing the electric field of photons. If we plug this ψ(x, t) wavefunction back into our 

starting point:  

∂2

∂x2
ψ =

1

c2

∂2

∂t2
ψ 

Since 
1

c2

∂2

∂t2
ψ =

E2

ℏ2c2
ψ: 

c2ℏ2
∂2

∂x2
ψ = E2ψ 

and as 
∂2

∂x2 ψ =
p2

ℏ2 ψ we can see that the above translates into: c2p2 = E2. This is just Einstein’s 

equation for energy of a massless particle! However, the point of this derivation is to introduce 

mass into the wave equation. To do so we look back at the real equation for relativistic energy: 

c2p2 + m2c4 = E2 and take the square root to approximate: 
p2

2m
+ mc2 ≈ E. The next few steps 

are a bit too onerous to review here; regardless, the end result is the 1-dimensional non-

relativistic Schrödinger equation:  

−ℏ2

2m

∂2

∂x2
ψ = Eψ 

where the approximations made remove the effects of relativity; this is why the speed of light no 

longer appears in the equation. Since this equation is for a moving particle with no potential 

energy, the total energy is just kinetic, i.e. E =
p2

2m
. The last thing to note is that, to extend the 

above to three dimensions you simply add in the double derivatives in y and z: 

−ℏ2

2m
(

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
) ψ =

−ℏ2

2m
∇2ψ =

p2

2m
ψ = Eψ 

12.2.1 Where’s the potential? In the previous derivation we never considered potential 

energy. Where does it go into the equation? We showed above that: 
−ℏ2

2m
∇2 is related to: 

p2

2m
, 

which is the kinetic energy because: 
p2

2m
 and: 

1

2
mv2 are the same thing! With this knowledge it 

becomes more apparent that the Schrödinger equation resembles a well-known formula from 

freshman physics: 

Kinetic Energy + Potential Energy = Total Energy 



As a result, if we simply state that the potential energy is just a function: V(x,y,z), then the full 

Schrödinger equation is:  

−ℏ2

2m
∇2ψ + Vψ = Eψ 

12.1.2 Consistency with the de Broglie relation. In 1923 Louis de Broglie proposed 

that, if wavy light can have particle-like properties (i.e. momentum), then perhaps particles can 

be wavy. To this end he derived the following, starting with Einstein’s equation of energy for a 

particle at rest: mc2 and equating that to the energy hυ of a wave: 

mc2 = hυ 

As the frequency of light υ is related to the wavelength by: λυ = c, the energy of the wave can 

be converted into: hυ = h
c

λ
. This means we can solve the wavelength from: mc2 = h

c

λ
: 

λ =
h

mc
 

Since a particle with mass can’t travel the speed of light, de Broglie substituted in the velocity v 

for the speed of light: λ =
h

mv
. Since momentum is: p = mv, we are left with a relationship for 

the wavelength of a particle as determined by its momentum: 

λ =
h

p
 

 When de Broglie determined that matter has an associated wavelength in 1924 at first no 

one paid much attention (and likely didn’t understand the implications). However, Albert 



Einstein noted de Broglie’s work, which generated interest and as such three years later Clinton 

Davisson and Lester Germer were able to prove the de Broglie hypothesis by diffracting 

electrons off a piece of metal. Shown in Figure 12.1 is an example of electron diffraction.  

Normally, one would expect electrons pointing at two slits in a material to go through like 

bullets; they ought to simply create a shadow of the two slits on the screen behind. However, 

since electrons have wavelength the two slits form an interference pattern just like light through 

a diffraction grating. Also shown in Figure 12.1 are Davisson and Germer’s original data. 

Vindicated, de Broglie won the Nobel Prize in 1929.  

What is most interesting about the Schrödinger equation is that it can return the de 

Broglie hypothesis if you “ask” it properly. Hopefully, you are wondering what does it mean for 

an equation to “ask”? In other words, how do you  tease out: λ =
h

p
 (de Broglie) from: 

−ℏ2

2m

∂2

∂x2 ψ =
p2

2m
ψ (Schrödinger)? Starting with the latter, we must insert something for ψ, which 

is our model for a particle. To this end we use the most simple wave equation possible, which is: 

ψ = cos (2π
x

λ
). This wave equation is subject to the Schrödinger equation’s double derivative 

−ℏ2

2m

∂2

∂x2 as follows:  

−ℏ2

2m

∂2

∂x2
ψ =

−ℏ2

2m

∂2

∂x2
cos (2π

x

λ
) =

4π2ℏ2

2m ∙ λ2
cos (2π

x

λ
) 

Since ℏ =
h

2π
: 

4π2ℏ2

2m ∙ λ2
cos (2π

x

λ
) =

h2

2mλ2
ψ 

Based on the Schrödinger equation: 
−ℏ2

2m

∂2

∂x2 ψ =
p2

2m
ψ, it must be true that: 

h2

2mλ2 =
p2

2m
. 

Simplifying further shows: λ2 =
2m∙h2

2m∙p2
, which reveals de Broglie’s wavelength  λ =

h

p
.  

The demonstration above reveals that the Schrödinger equation is consistent with the de 

Broglie relationship. It also shows that: 
−ℏ2

2m

∂2

∂x2, which we will call an “operator” for now on, 

provides the kinetic energy as we presumed already. To make these types of derivations easier in 

the future we will simplify the wave equation as:  

ψ = cos (2π
x

λ
) → cos(kx) 



where k =
2π

λ
, and is called the “wavevector”. In three dimensions k is truly a vector and points 

in the direction that the wave is travelling in. We can determine some relationships between the 

wavevector k, momentum, and energy via application of the Schrödinger equation: 

−ℏ2

2m

∂2

∂x2
ψ =

−ℏ2

2m

∂2

∂x2
cos(kx) =

ℏ2k2

2m
cos(kx) = E ∙ cos(kx) 

From the above it must be true that: 
ℏ2k2

2m
= E, and as a result: k =

√2mE

ℏ
 and  ψ = cos (

√2mE

ℏ
x). 

You may also notice from the above that: p2 = ℏ2k2, and since k =
2π

λ
 and ℏ =

h

2π
  we have: 

p2 = (
h

2π
)

2

(
2π

λ
)

2

 which simplifies to the de Broglie relationship: λ =
h

p
. Everything is self-

consistent!  

12.3 Born interpretation. Back in the mid 1920’s there was some confusion as to the 

purpose of the wave equation ψ. While it can deliver a numerical value for energy (quite useful), 

some questioned if they have any intrinsic meaning. For example, my Aunt Mary’s dog only 

turns right when walking, hence an equation for the angle of his turns is −|θ|. This implies that 

he tries to turn left (positive θ) an unseen force causes him to reverse (the negative of the 

absolute value). What do we call this doggie force? Is it fundamental, like gravity or 

electromagnetism, and can we measure this force acting on other dogs? What about cats?  

In reality, the dog had surgery on 

his left paw and that is why he only turns 

right, a fact that isn’t captured by −|θ|. 

Hence, we shouldn’t over interpret an 

equation that describes him. Are we doing 

the same thing with wave equations?  

Max Born was the first to state that 

wave equations have substantial meaning, 

which is to say that they represent 

probability distributions. Specifically, if 

you square the wavefunction to make sure 

it is always positive as shown in Figure 

12.2, it represents the probability that you 



can find the particle at some point in space (probability distributions were discussed at length in 

Chapter 10). The fact that the wavefunction squared is a probability distribution requires that it 

be “normalized”, which means: 

∫ |ψ|2 ∂τ

upper limit

lower limit

= ∫ ψ∗ψ ∂τ

upper limit

lower limit

= 1.0 

where ψ∗ is the complex conjugate of the wavefunction, which needs to be used because most 

wavefunctions are complex (i.e. they have 𝑖 = √−1 in them). There is a substantial amount to 

unpack from this normalization equation. First, we didn’t specify the limits because they depend 

on what is being represented and how “big” the wave equation is allowed to be. For example, if 

we are using quantum mechanics to describe a particle trapped in a box of length L, then the 

lower limit would likely be x=0 and the upper x=L. Also note the partial ∂τ in the integral. This 

is a symbol that is generic for the dimensionality of the wave equation. Thus far, we have been 

dealing with a wave in the x direction, so ∂τ = ∂x. If we were trying to solve a quantum 

mechanical problem for a particle in three dimensions, then ∂τ = ∂x ∂y ∂z, and of course that 

means that normalization integral is actually a triple integral. If we were working in radial 

coordinates then ∂τ = r2sin (θ) ∂r ∂ϕ ∂θ, where r2sin (θ) is the Jacobian that property accounts 

for the volume. If there is no angular dependence to a problem that involves radius, then ∂τ =

4πr2 ∂r. Last, you should know that we are going to have to use complex mathematics to work 

quantum mechanical problems. If you are not familiar, there is a short description of most of 

what you need to know on the next page; more can be found on the “internet”. While this may 

seem like more to learn (and it is), the value is that complex mathematics makes solving 

quantum mechanical problems much easier.  

12.3.1 Normalization. Let’s take a look back at what it means for a wave equation to be 

normalized. Generally, when we determine that a wavefunction is something like: ψ = cos(kx), 

for example, it is unlikely to be normalized. As a result, we have to make it normalized. To do so 

you multiply ψ by a normalization constant (N) as:  

ψnorm =  Nψ =
1

√∫|ψ|2 ∂τ
ψ 

As a result:  



∫ ψnorm
2 ∂τ =

∫ ψ∗ψ ∂τ

√∫|ψ|2 ∂τ √∫|ψ|2 ∂τ
=

∫ ψ∗ψ ∂τ

∫ ψ∗ψ ∂τ
= 1 

and clearly N =
1

√∫ ψ2 ∂τ
. It is often the case that we first figure out what kind of function (sine, 

cosine etc.) is the solution to the wave equation, and then normalize it after the fact. Sometimes 

we don’t need to normalize the wave equation to answer problems, but it is a good practice. In 

fact, we will generally assume that wave equations have been properly normalized in our further 

discussions. It is interesting to note that the requirement for normalization means that not any 

function can be a wavefunction; in fact there are a few restrictions on solutions as discussed 

below.  

12.3.2 Wave equation restrictions. Since the absolute value, i.e. the square of the wave 

equation, must be related to probability there are some restrictions on what wave equations can 

and cannot do as shown in Figure 12.3. First, they cannot be 0 everywhere. This is sort of silly, 

since ψ = 0 doesn’t leave much room for solving any problems. Second, they must be 

continuous. Otherwise, there are basically two probabilities for a particle to be found at a certain 

point in space- what kind of nonsense is that? Third, the wavefunctions must be smooth, which 

means that the derivative cannot approach ∞ at any point. As you will see later, if the derivative 

did so then the particle would have more kinetic energy that the Universe holds. Last, 

wavefunctions cannot be divergent, which means that they can be integrated to a finite value. If 

not, then the wavefunction could not be normalized, which would not be consistent with the rules 

of probability distributions. 

One of the tricks of quantum mechanics is to use these restrictions to solve problems. 

Generally, the most relevant are the smooth and continuous stipulation at some sort of boundary. 

Often that boundary takes the form of a 

sudden change in the potential energy at 

a point in space. Another observation is 

that these boundary conditions mean 

that a solution for the wave equation 

can’t be found for any energy, rather, 

often discrete energy values. This is the 

source of the “quantum” in quantum 



mechanics, and the solutions are likely to look like standing waves discussed earlier. 

12.4 The Eigenvalue Equation and operators. Previously we referred to the kinetic 

energy part: 
−ℏ2

2m

∂2

∂x2
 of the Schrödinger equation as an “operator”. This is a good name because 

the double derivative causes you to “do” something to the wave equation, i.e. you operate on it. 

There are many different types of operators because there has to be one for anything that is 

“real” and can be measured. You will learn many of them, and we will give them a generic 

symbol: Ω̂, where the “hat” signifies a quantum mechanical operator. We will use the Φ symbol 

for the wave equation that Ω̂ operates on (and unfortunately Φ are also called eigenfunctions, 

because people like to give names to things that already have names).  You may also have 

noticed that when we applied the kinetic energy operator: Ω̂ =  
−ℏ2

2m

∂2

∂x2 to the wave equation: Φ =

cos (
2𝜋

𝜆
x) that we were able to calculate the energy via what is called the “eigenvalue equation”: 

Ω̂Φ = ωΦ 

where “ω” is the result of the eigenvalue equation and is creatively called the eigenvalue. For 

instance, application of the kinetic energy operator returned an eigenvalue ω, which happened to 

be the kinetic energy. Quite useful if you want to know the kinetic energy.  

Eigen is German for “same”, which refers to the fact that the wave equation Φ appears to 

the left and right side of the eigenvalue equation. This reveals an absolutely crucial aspect of 

quantum mechanics, which is that if the wave equation doesn’t appear exactly as is on both the 

left and right, then the eigenvalue is meaningless. For example, if we have an operator Ω̂ that 

acts on Φ = N ∙ cos (
2𝜋

𝜆
x) as follows: 

Ω̂Φ = Ω̂ cos (
2𝜋

𝜆
x) =

2𝜋

𝜆
∙ sin (

2𝜋

𝜆
x) ≠ ωΦ      or      Ω̂Φ = Ω̂ cos (

2𝜋

𝜆
x) = x ∙ cos (

2𝜋

𝜆
x) ≠ ωΦ 

then these examples are quantum mechanical “fails”, and nothing can be learned from the results.  

If the wave equation appears exactly the same on left and right side, then we say that the wave 

equation Φ is an eigenfunction of the operator Ω̂. To verify our understanding, we will measure 

the kinetic energy once again: 

Ω̂Φ =
−ℏ2

2m

∂2

∂x2
 cos (

2𝜋

𝜆
x) ωΦ =

2𝜋2ℏ
2

m𝜆2
cos (

2𝜋

𝜆
x) = ωΦ 



This is a good example, and we know that the kinetic energy of the particle that is described by 

the wave equation Φ = cos (
2𝜋

𝜆
x) is: 

2𝜋2ℏ2

m𝜆2 . The wave equation(s) that work with an operator are 

often referred to as “belonging” to that operator; the proper way of saying this is to state, “the set 

of one or more functions Φ are eigenfunctions of the operator Ω̂”. 

As we move forward you will learn many more operators. Some of them are very special, 

such as the Hamiltonian operator that returns the total energy. The Hamiltonian is given the 

symbol Ĥ; likewise, the wave equations of the Hamiltonian are called “wavefunctions” and are 

given the symbol ψ.  Thus, the eigenvalue equation for the Hamiltonian is properly expressed as: 

Complex mathematics 

Despite the name, complex mathematics is not that hard. It’s all about the letter “i”, which is 

equal to √−1. As a result, i2 = −1. Likewise: i3 = −i and i4 = 1. Here are some additional 

indentities: 

If: ex = 1 + x +
x2

2
+

x3

6
+

x4

24
+

x5

120
…  

therefore: eix = 1 + ix +
i2x2

2
+

i3x3

6
+

i4x4

24
+

i5x5

120
+ ⋯  

If you separate real from imaginary: eix = (1 −
x2

2
+

x4

24
) + i (x −

x3

6
+

i5x5

120
) + ⋯, and from 

what you might recall of cos(x) = 1 −
x2

2
+

x4

24
… and sin(x) = x −

x3

6
+

i5x5

120
… you can show: 

eix = cos(x) + i ∙ sin(x) 

Likewise, e−ix = cos(x) − i ∙ sin(x). These relationships can be combined into: 

sin(x) =
eix − e−ix

2i
 and cos(x) =

eix + e−ix

2
 

Another valuable relationship is the complex conjugate, which is ψ∗(𝑖) = ψ(𝑖). Therefore 

ψ2 = ψ∗ψ. Here is an example, if ψ = eikx = cos(kx) + i ∙ sin(kx) and ψ∗ = cos(kx) − i ∙

sin(kx), then it is easy to show that:  

ψ∗ψ = cos(kx) + i ∙ sin(kx)(cos(kx) − i ∙ sin(kx)) = 

cos2(kx) − i ∙ cos(kx)sin(kx) + i ∙ cos(kx)sin(kx) + sin2(kx) = 1 

A graph of ψ = eikx is shown here. Note how the real and imaginary parts of the function 

have to be graphed separately.  



Ĥψ = Eψ, where we also changed the symbol for the eigenvalue (ω) to “E” for energy. Recall 

that you have already seen the Hamiltonian operator 

Ĥ =
−ℏ2

2m
∇2 + V̂ 

where V̂ is the potential energy operator, which is usually a function of position. We believe the 

wavefunctions ψ of the Hamiltonian operator are the most meaningful results of quantum 

mechanics because we believe that they are “real”. In fact, all the learnings you have had 

previously about atomic structure, such as s- and p-orbitals of hydrogen and heavier elements, 

are in fact wavefunctions of the atom’s Hamiltonian.  

Let’s see a few more operators. Given that particles have momentum, and that is something 

we can definitely measure, there must be an associated quantum mechanical operator for it. In 

fact, the momentum operator (p̂) is:  

p̂ =
ℏ

i

∂

∂x
 

This is fully consistent with our kinetic energy operator 
p̂2

2m
 as follows:  

p̂p̂

2m
=

p̂2

2m
=

1

2m

ℏ

i

∂

∂x

ℏ

i

∂

∂x
=

1

2m

ℏ2

i2

∂2

∂x2
= −

ℏ2

2m

∂2

∂x2
 

Another operator is the position operator x̂, which is quite simple: x̂ = x. More complex 

operators include the z-component of angular momentum jẑ =
ℏ

i

∂

∂ϕ
, which we will cover in a 

later chapter. The important thing to know is that there are many operators for calculating many 

different properties from quantum mechanical 

objects such as electrons and molecules.  

12.4.1 Eigenfunctions of different 

operators. There is one last, very important 

lesson about operators and eigenfunctions 

which is one of the most complicated things 

about quantum mechanics. And that is the fact 

that the eigenfunctions of one operator may, 

or may not, be the eigenfunctions of another 

operator. This is shown by the Venn diagram 

in Figure 12.4, and as an example let’s go 



back to the example of a Hamiltonian operator with no potential energy, i.e. Ĥ =
−ℏ2

2m

∂2

∂x2
. A 

wavefunction of this Hamiltonian is ψ = cos (
2𝜋

𝜆
x), and has an energy as we showed on the 

previous page. Now, if we apply the momentum operator to the same state: 

p̂ψ =
ℏ

i

∂

∂x
cos (

2𝜋

𝜆
x) =

2𝜋

𝜆
∙ sin (

2𝜋

𝜆
x) ≠ ωψ 

Then you should know that the momentum of the state most definitely is not 
2𝜋

𝜆
. The next section 

will discuss in great detail how we deal with this uncomfortable situation. 

12.4.2 Practice with the Eigenvalue Equation and Complex Wave Equations. We 

have already shown that wave equations, when squared, provides a measure of probability that a 

quantum mechanical particle is at a particular position. We have also shown how a wave 

equation can provide additional information, that being what is returned when it is operated on 

by, oddly, operators. We will make this more concrete with examples here. Let’s say that the 

normalized wavefunction for an electron is: ψ = N ∙ cos(kx) where N is the normalization 

constant and k is the wavevector 
2𝜋

𝜆
. We know how to square this function, which then tells us 

the probability that the electron is at a position x that we are curious about (for whatever reason). 

What about the energy of this electron? Just like in the previous examples we apply the potential 

energy free (i.e. V̂ = 0) Hamiltonian: 

Ĥψ = −
ℏ2

2m

∂2

∂x2
{N ∙ cos(kx)} = −

ℏ2

2m

∂

∂x
{N ∙ k ∙ sin(kx)} =

ℏ2k2

2m
{N ∙ cos(kx)} 

Comparison to the eigenvalue equation Ĥψ = Eψ reveals that the above is in the proper form, so 

we can be sure that the energy is: 
ℏ2k2

2m
.  

Now let’s repeat the above using the complex mathematical version of the wavefunction 

shown previously, N ∙ cos(kx) = N ∙ (
1

2
eikx +

1

2
e−ikx): 

Ĥψ = −
ℏ2

2m

∂2

∂x2
{N ∙ (

1

2
eikx +

1

2
e−ikx)} = −

ℏ2

2m

∂

∂x
{N ∙ (

ik

2
eikx +

−ik

2
e−ikx)}

= −
ℏ2

2m
{N ∙ (

−k2

2
eikx +

−k2

2
e−ikx)} 

The next step is to factor out −k2 which gives us: 

Ĥψ =
ℏ2k2

2m
{N ∙ (

1

2
eikx +

1

2
e−ikx)} = Eψ 



where again we see that E =
ℏ2k2

2m
. So, everything seems fine, but why are we using this 

approach? While solving Ĥψ using the complex representation of ψ = N ∙ cos(kx) seems more 

difficult, there are going to be many examples coming up where the complex representation is far 

easier to work with. For example, the electron’s wavefunction could have been ψ = N ∙ eikx. In 

this case, which do you think is harder to solve:  

Ĥψ = −
ℏ2

2m

∂2

∂x2
{N ∙ eikx} 

or:  

Ĥψ = −
ℏ2

2m

∂2

∂x2
{N ∙ cos(kx) + i ∙ sin(kx)} 

Just for the heck of it let’s solve the former: 

Ĥψ = −
ℏ2

2m

∂2

∂x2
{N ∙ eikx} = −

ℏ2

2m

∂

∂x
{ik ∙ N ∙ eikx} = −

ℏ2

2m
{i2k2 ∙ N ∙ eikx} =

ℏ2k2

2m
{N ∙ eikx} 

Taking the derivative of an exponential is easy, and just like the previous example, we see that 

E =
ℏ2k2

2m
. This wasn’t nearly as hard as taking the double derivative of two trig functions! 

12.4.2.1 Applications of other operators: Let’s continue to work with ψ = N ∙ eikx, from 

which we will extract the momentum via p̂:   

p̂ψ =
ℏ

i

∂

∂x
{N ∙ eikx} =

ℏ

i
{ik ∙ N ∙ eikx} = ℏk{N ∙ eikx} 

We can see that this wavefunction represents an electron with 
ℏ2k2

2m
 of energy and ℏk of 

momentum. Notice the consistency, as in the absence of potential the total energy is E =
p2

2m
, and 

inserting p= ℏk yields 𝐸 =
ℏ2k2

2m
. If the wavefunction of the electron was ψ = N ∙ e−ikx, we would 

have still found 
ℏ2k2

2m
 of energy but −ℏk of momentum (note that this is still consistent with E =

p2

2m
). Why would one wavefunction have a positive momentum and the other negative? Why, the 

interpretation is simple, ψ = N ∙ eikx represents a particle moving forward and ψ = N ∙ e−ikx is 

moving backwards! 

Now let’s double check our math abilities one last time with ψ = N ∙ cos(kx), from 

which we will calculate the momentum.  

p̂ψ =
ℏ

i

∂

∂x
{N ∙ cos(kx)} =

−ℏk

i
{N ∙ sin(kx)} = −iℏk{N ∙ sin(kx)} 



where we used the identity 
−1

i
= i in the last step. Therefore, this electron is moving to the left 

with an imaginary amount of momentum. What does it mean for this electron to have imaginary 

momentum? Why, it means absolutely nothing- there is no such thing as imaginary momentum, 

which should be a clue that you screwed up the question. What did you do wrong? You didn’t 

get the correct eigenvalue equation form:  

Ω̂Φ = ω ∙ Φ 

as you don’t have the wavefunction on the left- and right-hand side equal to each other: 

p̂{N ∙ cos(kx)} ≠ p̂{N ∙ sin(kx)} 

After all, cosine and sine are not the same thing.  

As discussed in the previous section, the eigenfunctions of one operator may, or may not, 

be the eigenfunctions of another operator. Here, the wavefunctions ψ = N ∙ eikx, N ∙ e−ikx, and 

N ∙ cos (kx) are all “good” with the Hamiltonian because they all deliver on Ĥψ = Eψ. However, 

only ψ = N ∙ eikx and N ∙ e−ikx are eigenfunctions of the momentum operator, but ψ = N ∙

cos (kx) is not. 

12.4.2 Expectation Values. How do we figure out the momentum of a particle with a 

wavefunction of the form ψ = N ∙ cos (kx)? Give up? Sometimes! After all quantum mechanics 

is all about probability, and you cannot know everything. In this case, instead of giving up you 

can often solve these types of problems using the following approach. If we write out: 

ψ = N ∙ cos(kx) =
N

2
eikx +

N

2
e−ikx 

you notice that particle’s wavefunction is composed of two equal momentum eigenfunctions, one 

that is moving to the right (eikx) and the other to the left (e−ikx). Now you can guess that the total 

momentum is 0. Good intuition, but quantum class is sort of a math class, so how do we prove it? 

Here we introduce a new expression that is called the “expectation value” for an operator Ω̂: 

〈Ω̂〉 = ∫ ψ∗Ω̂

upper limit

lower limit

ψ ∙ ∂τ 

where ψ may, or may not, be the eigenfunction of the operator Ω̂. What is great about 

expectation values is that it doesn’t matter- in either case you will get the right answer. Let’s 

apply this to our current problem with determining the momentum of ψ = N ∙ cos(kx): 



〈p̂〉 = ∫ {N ∙ cos(kx)}∗
ℏ

i

∂

∂x

upper limit

lower limit

{N ∙ cos(kx)} ∙ ∂x 

−ℏ

i
N2 ∫ cos(kx)

∞

−∞

∙ sin(kx) ∙ ∂x 

When we look up this integral off the internet, we find ∫ cos(kx)
∞

−∞
∙ sin(kx) ∙ ∂x = 0. So, as we 

can see we got the right answer: 〈p̂〉 = 0. While this problem is a bit difficult, notice how we 

were able to determine the momentum with this approach, while we couldn’t do anything, at all, 

with the standard eigenvalue equation. So, we have that going for us, which is nice. 

The expectation value approach also works with functions that are eigenfunctions. Let’s 

do an example using the normalized “right wave” Φ = N ∙ eikx eigenfunction of momentum, that 

being the: 

〈p̂〉 = ∫ {N ∙ eikx}
∗ ℏ

i

∂

∂x

upper limit

lower limit

{N ∙ eikx} ∙ ∂x = 

〈p̂〉 =
ℏ

i
∫ N∗ ∙ e−ikx ∙ ik ∙ N ∙ eikx ∙ ∂x

∞

−∞

= 

〈p̂〉 =
ℏik

i
∫ N∗ ∙ e−ikx ∙ N ∙ eikx ∙ ∂x

∞

−∞

= ℏk ∫ Φ∗Φ ∙ ∂x

∞

−∞

= ℏk 

where the complex conjugate {N ∙ eikx}
∗
 is: N∗ ∙ e−ikx,  and we used the formula ∫ Φ∗Φ ∂x =

∫|Φ|2 ∂x = 1 in the last step which is the definition of normalization. While we determined the 

corrent momentum, you might ask, why not stick with Ω̂Φ = ω ∙ Φ given that 〈p̂〉 was seemingly 

much more complicated to work with? You are correct, it is generally mathematically far more 

simple to work with the eigenvalue equation over the expectation value expression. However, the 

expectation value method always works, and also gives us a “clean” answer because we don’t 

have to try to untangle the eigenvalue from the eigenfunction.   

Now you might ask, why does the expectation value method work? For one, if we are 

working on eigenfunctions of the operator Ω̂, the answer is seen in a simple derivation: 

〈Ω̂〉 = ∫ Φ∗Ω̂Φ ∙ ∂τ

∞

−∞

= ∫ Φ∗ ∙ ω ∙ Φ ∙ ∂τ

∞

−∞

= ω ∙ ∫ Φ∗ ∙ Φ ∙ ∂τ

∞

−∞

= ω 



where we assume that Φ is normalized. However, this proof breaks down when we are not 

applying an eigenfunction of the operator, i.e. when Ω̂ψ ≠ ω ∙ ψ. What do we do in this case? 

Here is another important lesson, which is that wavefunctions can always be written as linear 

combinations of other wavefunctions. For example, let’s say that the operator Ω̂ has two 

eigenfunctions Φ1 and Φ2, but ψ is not an eigenfunction of Ω̂. Upon further analysis you realize 

that ψ is a linear combination of the Φ′s: 

ψ = c1 ∙ Φ1 + c2 ∙ Φ2 

where c1 and c2 are constants. When you apply the above to the expectation value expression: 

〈Ω̂〉 = ∫ ψ∗Ω̂ψ ∙ ∂τ

∞

−∞

= ∫ {c1 ∙ Φ1 + c2 ∙ Φ2}∗Ω̂{c1 ∙ Φ1 + c2 ∙ Φ2} ∙ ∂τ

∞

−∞

 

This problem has now turned into an algebraic mess which is a common occurrence. Fortunately, 

algebra is a middle school level of mathematics and as such we can deal with it: 

〈Ω̂〉 = ∫ {c1 ∙ Φ1 + c2 ∙ Φ2}∗Ω̂{c1 ∙ Φ1 + c2 ∙ Φ2} ∙ ∂τ

∞

−∞

= ∫ {c1
∗Φ1

∗Ω̂c1Φ1 + c2
∗Φ2

∗Ω̂c2Φ2 + c1
∗Φ1

∗Ω̂c2Φ2 + c2
∗Φ2

∗Ω̂c1Φ1} ∙ ∂τ

∞

−∞

 

This can be broken up into four smaller integrals which is less scary.  

〈Ω̂〉 = ∫ c1
∗Φ1

∗Ω̂c1Φ1 ∙ ∂τ

∞

−∞

+ ∫ c2
∗Φ2

∗Ω̂c2Φ2 ∙ ∂τ

∞

−∞

+ ∫ c1
∗Φ1

∗Ω̂c2Φ2 ∙ ∂τ

∞

−∞

+ ∫ c2
∗Φ2

∗Ω̂c1Φ1 ∙ ∂τ

∞

−∞

 

We can simplify this further using the relationships:  

Ω̂c1Φ1 = ω1 ∙ c1Φ1, Ω̂c2Φ2 = ω2 ∙ c2Φ2, c1
∗c1 = |c1|2, and  c2

∗c2 = |c2|2 

to yield: 

〈Ω̂〉 = |c1|2 ∙ ω1 ∙ ∫ |Φ1|2 ∙ ∂τ

∞

−∞

+ |c2|2 ∙ ω2 ∙ ∫ |Φ2|2 ∙ ∂τ

∞

−∞

+ c1
∗c2 ∙ ω2 ∫ Φ1

∗Φ2 ∙ ∂τ

∞

−∞

+ c2
∗c1

∙ ω1 ∫ Φ2
∗Φ1 ∙ ∂τ

∞

−∞

 

Now the above monster can be solved using something that we know already, which is that 

eigenfunctions are normalized: 



∫ |Φ1|2 ∙ ∂τ

∞

−∞

= ∫ |Φ2|2 ∙ ∂τ

∞

−∞

= 1 

Now we also must introduce a new concept called “orthonormality” for the 3rd and 4th expression 

above: 

∫ Φ1
∗Φ2 ∙ ∂τ

∞

−∞

= ∫ Φ2
∗Φ1 ∙ ∂τ

∞

−∞

= 0 

What this means is that, for two eigenfunctions of the same operator, when you integrate them 

together you get 0. The proper language is that “they do not overlap”, and we will explain this 

further in the next section on Hermitian operators. Regardless, the remainder of the proof is: 

〈Ω̂〉 = |c1|2 ∙ ω1 + |c2|2 ∙ ω2 

Now you may have said to yourself, “I can’t imagine when would I every run into an 

equation like: ψ = c1 ∙ Φ1 + c2 ∙ Φ2.” Actually, you already have, with:  

N ∙ cos(kx) =
N

2
eikx +

N

2
e−ikx 

Here, ψ = N ∙ cos(kx),  c1 =
1

2
 and c2 =

1

2
 and Φ1 = eikx and Φ2 = e−ikx. We have already 

shown that ψ is not the eigenfunction of the momentum operator p̂, although Φ1 and Φ2 are 

since p̂Φ1 = ℏk ∙ Φ1 and p̂Φ2 = −ℏk ∙ Φ2. Since ψ can be expressed as a linear combination of 

that are eigenfunctions of p̂ we can plug all this information into 〈p̂〉 = |c1|2 ∙ ω1 + |c2|2 ∙ ω2 to 

find: 

〈p̂〉 = |
1

2
|

2

∙ ℏk + |
1

2
|

2

∙ (−ℏk) = 0 

Consequently, we not only see once again how the expectation value can allow us to figure out 

observables from difficult functions (ones that are not eigenfunctions), we also see how it works. 

We also see that ψ = N ∙ cos(kx) describes a particle that isn’t moving. ψ = N ∙ sin(kx) would 

do the same thing.  

12.4.3 Expectation Value examples: Position. We have already discussed how the 

position operator x̂ is simply x. Consequently, let’s apply the operator to our favorite 

wavefunction ψ = N ∙ cos(kx), and recall for the eigenvalue equation to work properly (for ψ to 

be an eigenfunction of Ω̂) we need to see that Ω̂ψ = ω ∙ ψ: 

x̂ψ = x ∙ N ∙ cos(kx) 



Whups- this is a fail, the wavefunction on the right is supposed to be a number (ω) multiplying 

the original wavefunction. However, if f(x) = cos(kx) and g(x) = x ∙ cos(kx), then clearly 

f(x) ≠ g(x) since “x” is not a finite value like 5 or . To be more plainspoken, you need to see 

ω = 5 or ω = π, not ω = x. The example above is undoubtedly confusing; we have two 

explanations. For one, the application of an operator is akin to asking a question. The position 

operator is asking, “Where are you at?” However, this question is nonsensical when applied to 

ψ = N ∙ cos(kx), since technically this wave is somewhere everywhere from -∞ to ∞. Thus, the 

question itself is not sensible, and thus there is an uninterpretable result. Another, easier 

explanation is that ψ is not an eigenfunction of x̂. And in these cases you need to apply the 

expectation value way of answering quantum mechanical questions. If you’re interested in what 

is an eigenfunction of x, look up “Dirac Delta Functions”.   

12.4.4 Hermitian operators. One of the most important relationships in quantum 

mechanics is called orthonormality. This means that, if you have a few functions ψn that are 

eigenfunctions of the operator Ω̂, then the following is true: 

∫ ψn′
∗ ψn ∙ ∂τ

upper limit

lower limit

= δn′,n 

Where d is the Kronecker delta function: 

δn′,n = {
0,if n′≠n
1,if n′=n 

 

We saw this previously in our discussion on the proof of the expectation value equation. Where 

does this come from? It is assumed that the wavefunctions are eigenfunctions of an operator that 

is Hermitian. The definition of a Hermitian operator is:  

∫ ψn′
∗ Ω̂ψn ∙ ∂τ = ∫ ψn(Ω̂ψn′)

∗
∙ ∂τ 

Now while this seems very abstract, you’re right, it is. However, it turns out that nearly all 

quantum mechanical operators (and most important the Hamiltonian operator) has this 

mathematical trait. The fact that the operator behaves this way has implications for the solutions 

to the operator, i.e. the wavefunctions. To see what we mean, first assume that the wavefunctions 

ψn and ψn′ are actually the exact same thing, meaning n = n′. Also  Ω̂ψn = ωnψn. As a result: 

∫ ψn
∗ Ω̂ψn ∙ ∂τ = ∫ ψn

∗ ωnψn ∙ ∂τ = ωn ∙ ∫ ψn
∗ ψn ∙ ∂τ 

Also:  



∫ ψn(Ω̂ψn)
∗

∙ ∂τ = ∫ ψn(ωnψn)∗ ∙ ∂τ = ωn
∗ ∙ ∫ ψnψn

∗ ∙ ∂τ 

Since, for a Hermitian operator ∫ ψn
∗ Ω̂ψn ∙ ∂τ = ∫ ψn(Ω̂ψn)

∗
∙ ∂τ, then:  

ωn ∙ ∫ ψn
∗ ψn ∙ ∂τ = ωn

∗ ∙ ∫ ψnψn
∗ ∙ ∂τ 

And thus:  

ωn ∙ ∫ ψn
∗ ψn ∙ ∂τ − ωn

∗ ∙ ∫ ψnψn
∗ ∙ ∂τ = (ωn − ωn

∗ ) ∫ ψn
∗ ψn ∙ ∂τ = 0 

Where we used the fact that, through the associative axiom of multiplication: ∫ ψn
∗ ψn ∙ ∂τ =

∫ ψnψn
∗ ∙ ∂τ. Now, there are only two ways for (ωn − ωn

∗ ) ∫ ψn
∗ ψn ∙ ∂τ = 0, either 

∫ ψn
∗ ψn ∙ ∂τ = 0 which we already know is false (its equal to 1) or ωn − ωn

∗ = 0, which means 

that ωn = ωn
∗ . When is a number equal to its complex conjugate? Only when that number is 

fully real. Thus, the eigenvalues of Hermitian operators have real eigenvalues. 

Next assume that n ≠ n′. The same analyses above yield: 

∫ ψn′
∗ Ω̂ψn ∙ ∂τ = ∫ ψn′

∗ ωnψn ∙ ∂τ = ωn ∙ ∫ ψn′
∗ ψn ∙ ∂τ 

Also:  

∫ ψn(Ω̂ψn′)
∗

∙ ∂τ = ∫ ψn(ωn′ψn′)∗ ∙ ∂τ = ωn′
∗ ∙ ∫ ψnψn′

∗ ∙ ∂τ 

Since ∫ ψn′
∗ Ω̂ψn ∙ ∂τ = ∫ ψn(Ω̂ψn′)

∗
∙ ∂τ then: 

(ωn − ωn′
∗ ) ∫ ψn′

∗ ψn ∙ ∂τ = 0 

And we now have to figure out whether ωn − ωn′
∗ = 0 or if ∫ ψn′

∗ ψn ∙ ∂τ = 0. Now, if ψn and 

ψn′ are different eigenfunctions of the operator then they must have different eigenvalues. If not, 

they would be the same. Thus, ωn ≠ ωn′, and we have to conclude that different eigenfunctions 

of the same operator are orthonormal: 

∫ ψn′
∗ ψn ∙ ∂τ = {

0,if n′≠n
1,if n′=n 

 

12.5. The freewave potential. In the next few sections we will examine a few paradigms of 

systems that are good first examples. The first is called the “free wave” particle, which is a 

quantum mechanical object (let’s just say its an electron), that lives in a single dimension without 



end. Also, there is nothing to interact with. As a result, the Hamiltonian: −
ℏ2

2m

∂2

∂x2
+ V(x) of that 

particle is simply: 

Ĥ = −
ℏ2

2m

∂2

∂x2
 

since V(x)=0 everywhere (no potential for interaction because there is nothing else to interact 

with). While this is a simple problem to work with, it has the unfortunate aspect of being highly 

unrealistic for describing the Universe with only one particle, and that the Universe doesn’t end 

(fyi ours does, thanks to the Big Bang).  

You may have already figured out that we have been working with the free wave system for this 

entire chapter. As a result we already know that there are four wavefunctions, and that ψ = N ∙

eikx is for a particle moving right, ψ = N ∙ e−ikx is for a particle moving left, and ψ = N ∙

cos(kx) and ψ = N ∙ sin(kx) are for particles that have no net momenta. Great, but here is 

something you may have not noticed. Let’s normalize the wavefunction by deriving the 

normalization constant that we already discussed is:  

N =
1

√∫ ψ2 ∂τ
 

And let’s use an unnormalized wavefunction ψ = eikx (recall, that our purpose here is to 

calculate what “N” is). First let’s simply solve the integral 

∫ ψ2 ∙ ∂x

∞

−∞

= ∫ ψ∗ψ ∙ ∂x

∞

−∞

= ∫ eikx∗
eikx ∙ ∂x

∞

−∞

= ∫ e−ikxeikx ∙ ∂x

∞

−∞

= ∫ ∂x

∞

−∞

= ∞ 

To solve this we used the fact that e−ikxeikx = e−ikx+ikx = e0 = 1. Thus, the normalized 

wavefunction is: ψ = N ∙ eikx =
1

√∞
eikx. In case you are wondering, no this doesn’t make sense. 

You can’t have equations with ∞ in it, and the square root doesn’t “save” it in some miraculous 

way. This normalized wavefunction is absurd, so you may be wondering how you fix it. 

The answer is, you don’t. You see, the problem itself is absurd, because this is a particle that is in 

an infinite universe and the particle may be found anywhere in it. Thus, the probability density 

for the normalized wavefunction ψ∗ψ is: 

ψ∗ψ =
1

√∞
e−ikx

1

√∞
eikx =

1

∞
= 0 



And this is exactly what you should get. In an infinite universe, the probability for a particle to 

be at any particular point in space is 0 because the particle has an infinite number of other places 

to be. So, the result is fine, just weird. 

Example problems, the “particle in a box”. This paradigm is a bit more simple, which is that 

the free wave is in fact inside a finite universe. Inside the box there is no potential energy, so 

Ĥ = −
ℏ2

2m

∂2

∂x2
. Outside the boundaries the potential energy is infinite, so the particle cannot leave 

the box. To make it interesting, we often make the particle have the mass of an electron and the 

box is 1×10-9 m (or 1 nm) big, which means that the electron displays quantum mechanical 

behavior. If the box was much bigger then the electron is just like a marble on a track, and we 

don’t really need quantum mechanics to describe it. This is a lesson that there are size regimes 

over which you observe quantum mechanical effects, and bigger ones where you don’t.   

Shown on the right is the potential surface. Since the wavefunction ψ(x) has to be ψ(0) = 0 at 

x=0, and ψ(L) = 0  at x=L, and have a double derivative that is equal to itself, the only 

mathematical entity that fits the bill for is ψ = N ∙ sin(? ). Now, we must design the argument of 

the function “?” to sure that   sin(x = L) = 0. A sine wave always starts at 0, and it next crosses 

0 at . Thus, we know that:  

ψ(x) = N ∙ sin (π
x

L
) 

works. Now, you might recall that we often found more than one solution to a problem; the free 

wave has four solutions for example. As you can see from the figure, the particle in a box also 

has more solutions because the sine wave has other 0’s, the first one at p and the next one at 2p. 

Thus, another solution to the particle in a box is ψ(x) = N ∙ sin (2π
x

L
). And we can keep 

figuring out new solutions until we see that there is a general relationship 

ψn(x) = N ∙ sin (nπ
x

L
), where n=1, 2, 3… 

While we have an infinite number of solutions for the particle in a box problem, how do we 

understand what they mean or represent? First, let’s figure out how to normalize them. As we 

have already shown many times that the normalization constant is N =
1

√∫ ψ2 ∂τ
, let’s simply 

calculate the integral: 



∫ ψ2 ∙ ∂x

L

0

= ∫ ψ∗ψ ∙ ∂x

L

0

= ∫ sin (nπ
x

L
)

∗

sin (nπ
x

L
) ∙ ∂x

L

0

= ∫ sin2 (nπ
x

L
) ∙ ∂x

L

0

 

To solve this we simply look up a table of standard trigonometric integrals to find:  

∫ sin2(ax) ∂x =
x

2
−

1

4a
sin (2ax) 

and thus: ∫ sin2 (nπ
x

L
) ∂x =

x

2
−

L

4nπ
sin (2nπ

x

L
). When placed into a definite integral: 

∫ sin2 (nπ
x

L
) ∙ ∂x

L

0

=
x

2
−

L

4nπ
sin (2nπ

x

L
)]

x=0

x=L

=
L

2
−

L

4nπ
sin(2nπ) =

L

2
 

because sin(2nπ) = 0 since n is a whole number integer, i.e. since n=1, 2, 3… then  sin(2nπ) =

sin(4π) = sin(6π) = 0.  

As a result, the proper normalized particle in a box wavefunctions are: 

ψn(x) = √
2

L
∙ sin (nπ

x

L
) 

Now for their interpretation, first we can calculate the energy. We will use the eigenvalue 

expression Ĥψn(x) = E ∙ ψn(x) since this is usually the fastest way if you know you are dealing 

with the eigenfunctions of the operator (here, the Hamiltonian).  

Ĥψn(x) = −
ℏ2

2m

∂2

∂x2
ψn(x) = −

ℏ2

2m

∂2

∂x2
√

2

L
∙ sin (nπ

x

L
) =

n2π2

2mL2
√

2

L
∙ sin (nπ

x

L
) 

As a result we see that the energy is En =
n2π2

2mL2. Since n=1, 2, 3… then the n=1 state is the 

ground state and all the others are excited states, as these have higher energies than the ground 

state. 

We can also figure out the average position of the particle in a box via the expectation value, 

which is always necessary when using the operator.  Note that you must use normalized 

wavefunctions to properly evaluate expectation values.  

〈x̂〉 = ∫ ψn′
∗ x̂ψn ∙ ∂τ

upper

lower

= ∫ (√
2

L
∙ sin (nπ

x

L
))

∗

∙ x ∙ √
2

L
∙ sin (nπ

x

L
) ∙ ∂x

L

0

 

Of course we know that sine functions are not complex, so sin(x)∗ = sin (x), and we can do 

some factoring to simplify the above into: 



〈x̂〉 =
2

L
∫ x ∙ sin2 (nπ

x

L
) ∙ ∂x

L

0

 

Use of a table of trigonometric identities yields: 

〈x̂〉 =
2

L
∫ x ∙ sin2 (nπ

x

L
) ∙ ∂x =

2

L
{
x2

2
−

xL

4nπ
sin (2nπ

x

L
) −

x2

4
−

L2

8n2π2
cos (2nπ

x

L
)]

x=0

x=L

} 

Inputting the limits and using the normalizer gives: 

〈x̂〉 = L −
L

2nπ
sin(2nπ) −

L

2
−

L

4n2π2
cos(2nπ) +

L

4n2π2
 

Since sin(2nπ) and cos(2nπ) are always 0 and 1, respectively, for n=1, 2, 3… then we are left 

with: 

〈x̂〉 = L −
L

2
=

L

2
 

And thus 〈x̂〉 =
L

2
, the middle of the box, for every state of the particle in the box since there is no 

dependence on the quantum number n in the equation above.  

Let’s do one last example, problem, which is the average momentum: 

〈p̂〉 = ∫ ψn′
∗ x̂ψn ∙ ∂τ

upper

lower

= ∫ (√
2

L
∙ sin (nπ

x

L
))

∗

∙
ℏ

i

∂

∂x
√

2

L
∙ sin (nπ

x

L
) ∙ ∂x

L

0

 

Several steps of simplification yield: 

〈p̂〉 = ∫ ψn′
∗ x̂ψn ∙ ∂τ

upper

lower

=
2

L

ℏ

i

nπ

L
∫ ∙ sin (nπ

x

L
) ∙ cos (nπ

x

L
) ∙ ∂x

L

0

 

Since ∫ sin(ax) ∙ cos (ax) ∂x = −
1

4a
cos (2ax) we find that: 

〈p̂〉 =
2ℏnπ

iL2
{−

L

4nπ
cos (2nπ

x

L
)}]

x=0

x=L

= −
ℏ

2iL
cos(2nπ) +

ℏ

2iL
 

And since cos(2nπ) = 0 for n as a whole number we find that 〈p̂〉 = 0. Does this make sense? 

Very much so, because if the particle had some net momentum then it could escape the box. But, 

it can’t, so every time it starts to move left it must hit the wall and move right. The net of the left- 

and right- motion cancel out completely, so the particle is stuck.  

  



Problems: Numerical 

1. More on eigenvectors. A particle with some kinetic energy is created in an empty, infinite 

universe. You are 60% certain it is moving to the right (momentum= +ℏk) and thus there is a 40% 

chance it is moving left (momentum= –ℏk). If I write the wavefunction Ψ(x) as a linear sum of 

normalized momentum eigenvectors: N ⋅ Φn(x), where N is the normalization constant, the result 

is: 

Ψ(x) = c1NΦ1(x) + c2NΦ2(x) = 0.7746 ⋅ N ⋅ eikx + 0.6325 ⋅ N ⋅ e−ikx 

a. How did I determine that c1=0.7746 and c2=0.6325? Does it have anything to do with the 

functions that they multiply (i.e N ⋅ eikx, N ⋅ e−ikx)? (hint: square the numbers)  (2 pts) 

b. Please derive the expectation value 〈p〉 of momentum for this particle using the formula: 

〈p〉 = ∫ [c1Φ1(x) + c2Φ2(x)]∗
ℏ

i

∞

−∞

∂

∂x
[c1Φ1(x) + c2Φ2(x)] ∂x 

Hint: ∫ N2e−ikxeikx ⋅ ∂x
∞

−∞
= 1, ∫ N2eikxeikx ⋅ ∂x

∞

−∞
= 0 and ∫ N2e−ikxe−ikx ⋅ ∂x

∞

−∞
= 0              (10 pts) 

2. More on eigenvectors. A particle with some kinetic energy is created in an empty, infinite 

universe. You are 75% certain it is moving to the right (momentum =ℏk) and thus there is a 25% 

chance it is moving left (momentum= –ℏk). If I write the wavefunction Ψ(x) as a linear sum of 

normalized momentum eigenvectors: N ⋅ Φn(x), where N is the normalization constant, the result 

is: 

Ψ(x) = c1NΦ1(x) + c2NΦ2(x) = 0.866 ⋅ N ⋅ eikx + 0.500 ⋅ N ⋅ e−ikx 

a. How did I determine that c1=0.866 and c2=0.500? Does it have anything to do with the functions 

that they multiply (i.e N ⋅ eikx, N ⋅ e−ikx)? (hint: square the numbers)   (2 pts) 

b. Please derive the expectation value 〈p〉 of momentum for this particle using the formula: 

〈p〉 = ∫ [c1Φ1(x) + c2Φ2(x)]∗
ℏ

i

∞

−∞

∂

∂x
[c1Φ1(x) + c2Φ2(x)] ∂x 

Hint: ∫ N2e−ikxeikx ⋅ ∂x
∞

−∞
= 1, ∫ N2eikxeikx ⋅ ∂x

∞

−∞
= 0 and ∫ N2e−ikxe−ikx ⋅ ∂x

∞

−∞
= 0             (10 pts) 

 

For the following questions, we will work with a 

particle wavefunction depicted here.  

3. For a wavefunction of the form: Ψ(x) =
2

L
∙ √x ∙

sin (
π

L
x), what is the variance in position:  

σx
2 = 〈x2〉 − 〈x〉2?   

a. First calculate 〈x〉    (6 pts) 



b. Next calculate 〈x2〉    (6 pts) 

c. And now determine 〈x2〉 − 〈x〉2  (6 pts) 

Hint: 
1

2
−

3

2π2
− (

2

3
−

1

π2)
2

≈ 0.0284 

Problems: Theoretical or Explain in Words  

1. Math practice! Operate on Ψ = r ∙ sin(θ) using the operator:              (10 pts) 

(
1

sin(θ)

∂

∂θ
cos(θ)

∂

∂r
r) − 2

cos2(θ)

sin2(θ)
 

Hint: 
∂

∂θ
{cos(θ) ⋅ sin(θ)} = cos2(θ) − sin2(θ), and Ψ is an eigenfunction with an eigenvalue of −2. 

2. Math practice! Operate on Ψ = r ∙ sin(θ) using the operator:  

(
∂

∂θ
tan(θ)

∂

∂r
r) − 2

tan(θ) sec(θ)

sin(θ)
 

Hint: 
∂

∂θ
{tan(θ) ⋅ sin(θ)} = sin(θ) + tan(θ) sec(θ), and Ψ is an eigenfunction with an eigenvalue of 

2.                      (10 pts) 

3. If I have a particle that does not experience any sort of potential energy (all energy is kinetic), 

then the Schrodinger equation is:  

−ℏ2

2m

∂2Ψ(x)

∂x2
= E ⋅ Ψ(x) 

which simplifies to: 

∂2Ψ(x)

∂x2
= −k2 ⋅ Ψ(x) 

where k2 = [
2m⋅E

ℏ2 ]. Solutions include Ψ(x) = eik∙x and Ψ(x) = e−ik∙x, both of which have an energy 

of: E =
ℏ2k2

2m
. 

a. Please show that a linear combination of eik∙x and e−ik∙x, i.e. Ψ(x) = eik∙x + e−ik∙x, is also 

eigenfunction of the Hamiltonian with the same energy E =
ℏ2k2

2m
.     (5 pts) 

b. Please show that the wavefunction: Ψ(x) = eik∙x − e−ik∙x is also an eigenfunction of the 

Hamiltonian with energy E =
ℏ2k2

2m
.         (5 pts) 

4. The eigenfunction of an operator Φ(x), such as p̂x =
ℏ

i

∂

∂x
, has the following property: 

p̂xΦ(x) = 𝜔 ∙ Φ(x) 

where 𝜔 is just some constant(s). Which of the following functions are eigenfunctions of the 

momentum operator? 



a. k·x2   b. ek⋅x2
  c. cos(k·x) d.  eikx  e. eikx + e−ikx   (5 pts) 

5. The eigenfunction of an operator Φ(x), such as p̂x =
ℏ

i

∂

∂x
, has the following property: 

p̂xΦ(x) = 𝜔 ∙ Φ(x) 

where 𝜔 is just some constant(s). Which of the following functions are eigenfunctions of the 

momentum operator? 

a. k·x2   b. ek⋅x2
  c. sin (k·x) d.  eikx  e. eikx − e−ikx   (5 pts) 

6. Which of the following are eigenfunctions of the kinetic energy operator 
p̂x

2

2m
=

−ℏ2

2m

∂2

∂x2? 

a. k·x   b. k·x2   c. ek⋅x2
  d. cos(k·x)      (8 pts) 

e. Given the Schrodinger equation: 
−ℏ2

2m

∂2Ψ(x)

∂x2 = E ⋅ Ψ(x), and assume that we know that the 

energy is 0. In this case, is it acceptable for the wavefunction to be (x)=k·x?   (5 pts) 

7. The “flux” operator: Ψ∗ ∂Ψ

∂x
− Ψ

∂Ψ∗

∂x
 tells you whether a wavefunction is moving left or right. If the 

answer is + or -, the wavefunction is moving either right or left. If you get 0, then the wavefunction 

is not moving. 

Can you apply the flux operator on the following:  

a. ψ = e−ikx   b. ψ = sin(k ⋅ x)   c. ψ = e−kx2
   (9 pts) 

and tell me whether the wavefunction is moving left, right, or isn’t moving. 

8. The “flux” operator: Ψ∗ ∂Ψ

∂x
− Ψ

∂Ψ∗

∂x
 tells you whether a wavefunction is moving left or right. If the 

answer is + or -, the wavefunction is moving either right or left. If you apply the operator and get 

0, then the wavefunction is not moving. 

Can you apply the flux operator on the following:  

a. ψ = eikx   b. ψ = cos(k ⋅ x)  c. ψ = e−kx2
    (9 pts) 

and tell me whether the wavefunction is moving left, right, or isn’t moving. 

9. Please normalize the wavefunction:  

Ψ(x) = √x ∙ sin (
π

L
x) 

For this problem you will need to use the on-line definite integral calculator:  

https://www.wolframalpha.com/widgets/view.jsp?id=8ab70731b1553f17c11a3bbc87e0b605 

Hint: Hopefully you know that the normalization is:            (5 pts) 

𝑁 =
1

√∫ Ψ∗ ∙ Ψ ∙ ∂x
L

0

 

https://www.wolframalpha.com/widgets/view.jsp?id=8ab70731b1553f17c11a3bbc87e0b605


10. Charles Hermite showed that wavefunctions have the property: 

∫ Ψj
∗Ψi ⋅

∞

−∞

∂x = 0 

for all i≠j; this is called orthonormality. All the operators we study are 

Hermitian. For a particle in a box, the ground state is:  

√
2

L
∙ sin (

πx

L
) 

and all excited states are:  

√
2

L
∙ sin (

nπx

L
) 

where n=2, 3, 4… Can you prove that ∫ Ψj
∗Ψi ⋅

L

0
∂x = 0 where i is the 

ground state and j are the excited states? You should use an on-line 

integrator to show that ∫ Ψj
∗Ψi ⋅

L

0
∂x yields an expression that has “n” in 

it that is always 0 if n>1.      

          (5 pts) 

Hint: The Wolfram web site often “hangs” on such calculations. To get 

it unstuck, hit the “=” on the lower right.  

 

 

  

Top: Charles Hermite, 

1901. Bottom: Charles 

Hermite, 2021. 

https://www.wolframalpha.com/widgets/view.jsp?id=8ab70731b1553f17c11a3bbc87e0b605
https://www.wolframalpha.com/widgets/view.jsp?id=8ab70731b1553f17c11a3bbc87e0b605

